
Naming Practices of Pre-Trained Models in Hugging Face

WENXIN JIANG, Purdue University, West Lafayette, IN, USA
CHINGWO CHEUNG, Purdue University, West Lafayette, IN, USA
MINGYU KIM, Purdue University, West Lafayette, IN, USA
HEESOO KIM, Purdue University, West Lafayette, IN, USA
GEORGE K. THIRUVATHUKAL, Loyola University Chicago, Chicago, IL, USA
JAMES C. DAVIS, Purdue University, West Lafayette, IN, USA

As innovation in deep learning continues, many engineers seek to adopt Pre-Trained Models (PTMs) as
components in computer systems. Researchers publish PTMs, which engineers adapt for quality or performance
prior to deployment. PTM authors should choose appropriate names for their PTMs, which would facilitate
model discovery and reuse. However, prior research has reported that model names are not always well chosen
— and are sometimes erroneous. The naming for PTM packages has not been systematically studied.

In this paper, we frame and conduct the first empirical investigation of PTM naming practices in the Hugging
Face PTM registry. We initiated our study with a survey of 108 Hugging Face users to understand the practices
in PTM naming. From our survey analysis, we highlight discrepancies from traditional software package
naming, and present findings on naming practices. Our findings indicate there is a great mismatch between
engineers’ preferences and practical practices of PTM naming. We also present practices on detecting naming
anomalies and introduce a novel automated DNN ARchitecture Assessment technique (DARA), capable of
detecting PTM naming anomalies. We envision future works on leveraging meta-features of PTMs to improve
model reuse and trustworthiness.
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1 Introduction
A Pre-Trained Model (PTM) packages the capabilities of a deep neural network (DNN) trained on a
task. Engineers exchange PTMs on registries (e.g.,Hugging Face) similar to how traditional software
components are shared (e.g., NPM, PyPI, or Maven packages). The selection of traditional software
components depends on the availability of ecosystems, knowledge base, and examples [1, 2].
Somewhat differently from traditional software components [3, 4], software engineers use the
names of PTMs during PTM reuse. Specifically, they search for DNN architectures by name, and
select among PTMs based on the training regime, architecture, dataset, etc., expressed in the name.

Although software engineers make use of PTM names during model search and selection, these
processes are challenging [5, 6]. In their interview data, Jiang et al. reported that engineers use PTM
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Fig. 1. Example of a PTM naming anomaly from Hugging Face. Top part: PTM identifier. Bottom part: PTM
architecture and model types. The identifier and architecture do not match.

names in their reuse process but that these names are viewed as flawed (Figure 1) or difficult to
comprehend, thus hindering the efficiency of PTM search and selection [4]. Industry leaders have
also emphasized the importance of PTM metadata (e.g., PTM names) in model registries, because
this facilitates better PTM management [7, 8]. As argued by Davis et al. [5], a comprehensive
understanding of the naming convention within the PTM ecosystem would benefit PTM authors
(improved discoverability); PTM reusers (improved search and selection); and registry operators
(better user experience).

Therefore, the goal of this work is to delineate the naming conventions of PTMs. We focus
on two themes: naming practices and rationales, and naming anomalies. In the first theme, our
objective is to comprehend the prevalent naming practices, identify the inherent challenges, and
discern how PTM naming diverges from traditional software package naming conventions. We
take a mixed-methods approach here. We conducted a survey involving 108 Hugging Face users,
achieving a 95% confidence level with a margin of error of 10%. We triangulate that data with a
mining study of real-world PTM names, analyzing 14,296 PTMs (1.7% of Hugging Face PTMs) from
the PeaTMOSS dataset [9]). For the second theme, we designed and evaluated an automated tool to
detect architecture-related naming anomalies.
Our findings indicate that PTM naming is different from traditional software package naming.

Engineers follow specific naming practices and encounter challenges that are specific to PTM
naming. Based on our survey data, we summarize the differences between traditional package
naming and PTM naming, and present the engineers’ perspective of PTM naming practices. Our
empirical measurement indicates the practical distribution of naming elements are different from
engineers’ preferences. Our automated tool, DARA, shows its capability of detecting naming
anomalies.

Our contributions are:

• We delineate the PTM naming practices by conducting a survey study. We delineated the PTM
naming practices by conducting a comprehensive survey among 108 Hugging Face users. This
survey helped define the nature of naming practices in the PTM ecosystem. (§5-RQ1, 2, 3))
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Naming Practices of Pre-Trained Models in Hugging Face 3

• We triangulated the survey study with measurements of 14,296 PTM names from Hugging Face.
We developed a GPT-4 based technique to automatically extract the naming elements from PTM
names. (§5-RQ2, 4)

• We developed a novel algorithm, DNN Architecture Assessment (DARA), to detect naming
anomalies. (§5.2)

• We identify unique properties of PTM naming to guide future research on improved automated
tool development, and enhancing both model reusability and trustworthiness. (§7)

Significance: Naming practices and conventions are critical in the context of pre-trained models
(PTMs). We conducted the first empirical measurements on PTM naming conventions through a
survey study and repository mining study. We also contributed automated measuring tools focusing
on measuring naming conventions in Hugging Face and automated discovery of naming anomalies.
Our findings help engineers and researchers have a better understanding of the PTM naming
practices and provide an initial solution to this problem domain. Our findings offer PTM creators
and maintainers insights to enhance the quality of PTM packages, and highlight how software
engineering tools can be leveraged to advance further naming analysis.

2 Background and Related Work
This section includes the background and related work about software component naming (§2.1),
how PTMs are named in registries (§2.2), and the challenges of PTM reuse (§2.3).
2.1 Naming Components in Software Engineering

Component-based development offers a systematic approach to constructing software systems from
reusable parts, enabling increased reuse and reduced software production cost [3, 10]. By leveraging
existing software components, developers can build upon established, tested functionalities instead
of creating solutions from scratch [11]. This enhances efficiency and promotes consistency and
reliability across software projects.
Searching and selecting software components for reuse is easier when the components have

good names. For example, in a traditional software ecosystem (not focused on AI/ML) such as PyPI,
it is clearer that package matplotlib is about plotting than is its competitor package seaborn, which
could facilitate its discovery and subsequent selection.
The naming of software components is also crucial for code readability, maintainability, and

collaboration [12–14]. Prior works indicated that software components are normally described in
“how it does it” (i.e., implementation units), but some components can also be described in “what a
components does” (i.e., application goals) [15, 16]. Existing studies have primarily concentrated on
the naming of functions [17], classes [18], and variables [16], neglecting the naming conventions
of packages. In the context of deep learning, PTM packages represent critical software components.
This work sheds light on that specific to PTM packages.
2.2 How PTMs are Named in Model Registries

In this section, we provide an overview of the naming framework used in model registries based
on the official documentation, particularly Hugging Face [19].
In the rapidly evolving landscape of PTMs, naming conventions are vital for ensuring both

consistent communication among stakeholders and compatibility across different models [4].
Existing literature notes that the prevalent approach to PTM reuse is conceptually fork-based,
incorporating both architectural modifications and additional training [20, 21].

PTM Package Naming Many model hubs have been developed to ease the reuse of PTMs.
These hubs generally adopt similar naming practices, which typically include the problem domain,
task, model identifier, and related files [22]. Previous research has defined and examined current
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Fig. 2. Hierarchy of PTM registry naming taxonomy. The red box highlights the package name (model
identifier and model type/architecture) — this is the focus of our study.

PTM registries, revealing that Hugging Face is the most popular due to its open-access approach,
allowing anyone to contribute to and reuse PTM packages [23]. Hugging Face employs a multi-tiered
categorization system, spanning diverse domains, tasks, PTMs, and configurations [19]: A domain
is the general field or area of application where a set of models operate, such as Natural Language
Processing or Computer Vision. Within a domain, tasks are specific problems that models aim to
solve, like Sentiment Analysis or Named Entity Recognition in the Natural Language Understanding
domain. A PTM is an individual instance of a trained model for a specific task, complete with
weights, parameters, and configuration metadata. A PTM package’s config.json file details the
model’s architecture and specifies the model type and the task it is designed for, e.g., Albert for the
model type and MaskedLM for the task.
Parts of this naming taxonomy (Figure 2) are determined by model registries, such as Hugging

Face, and parts are determined by authors:
• Domain and task are high-level metadata that are part of the package type.
• We define a PTM name as the combination of a package identifier (e.g., albert-base-v2) and
the model type or architecture indicated in the metadata (e.g., AlbertForMaskedLM).

• Package content: low-level files included in a package, such as weights and training scripts.
In the Hugging Face ecosystem, both the package type and its content are objective factors.

On the other hand, the package name is a subjective element, often produced manually by the
PTM contributors themselves. This subjectivity makes the naming process a critical point where
inadequacies or ambiguities can occur. It is essential to recognize that both objective and subjective
components of a package are susceptible to varying degrees of judgement, which can impact
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how reengineers and adopters search for models. According to prior research [4], the engineers
involved in PTM ecosystem commonly rely on either package identifiers or architectural labels
when searching for PTM packages appropriate for their specific tasks.

Naming Elements In the context of PTM package naming, naming elements comprising a model’s
name, representing different categories or attributes that are combined to form the full model name.
For example, a model with elements of "Architecture-Size-Dataset Characteristic," indicating that
the model name is composed of information about its architecture (e.g., deberta), size (e.g., base),
and dataset characteristic (e.g., uncased).
2.3 The Challenges of PTM Reuse
PTM reuse has garnered increasing attention in the academic community. Previous studies have
focused on various aspects of PTM reuse, including environmental impacts [24], vulnerabilities [25],
and lifecycle management [26]. Taraghi et al. conducted a mining study and indicated that the most
challenging part of PTM reuse is model usage and understanding [27]. Addressing the intricacies
of PTM naming conventions is critical, as clear and consistent naming can significantly facilitate
engineers’ comprehension of package contents and contribute to reducing production costs [12, 28].
However, standardized PTM naming practices have yet to be established. Our work provides the
first empirical measurement on the naming practices of PTM packages in Hugging Face.
According to Jiang et al., PTM reuse is distinct from traditional software reuse process and has

many challenges, including naming ambiguity, absence of comprehensive documentation, and
compatibility issues [4, 9]. Some of the 12 interview participants from their study mentioned the
challenges of PTM component reuse specifically. There are 6 out of 12 interview participants in their
study mentioned the untrustworthiness of model architectures, which is an important components
of PTM naming. Two participants specifically mentioned the reuse challenges caused by the naming
practices of PTM packages [4].

Naming Anomalies Naming anomalies signify inconsistencies or elements not aligned with
standard practices. These anomalies can lead to misunderstandings or mistakes in reuse. For
instance, labeling “ResNet” as “VGGNet” would be a naming anomaly beyond mere subjectivity.
According to a prior interview study [4], engineers often rely on the names of PTM packages
for information, as model cards (README) and metadata provided by these registries are often
insufficient. Such missing details and inconsistencies can pose challenges in PTM reuse, including
problems with understanding the model’s capabilities and limitations, as well as issues related to
code maintenance and collaboration [14].

Figure 1 shows an example PTM naming anomaly. It is important to note that the appropriateness
of a PTM name can be subjective. However, there is no standard or guidelines exist to assess this
in the PTM ecosystem. Our study illustrates the methods practitioners employ to identify such
anomalies and introduces an automated tool designed to detect incorrect architecture and model
types.
3 ResearchQuestions
To summarize the literature: previous studies have focused on the naming conventions associated
with traditional software packages [13, 14]. Existing work has shown how PTM reuse is challenging
and the importance of systematic PTM naming [4, 5]. PTM naming presents its own set of challenges
that have yet to be discovered.

To address this gap and identify the potential risks of naming in the PTM ecosystem, our study
includes two themes: (1) measurements of naming practices and (2) discovery of naming anomalies.
We ask:
Theme 1: Measurements of Naming Practices
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RQ1 How is PTM naming different from traditional software package naming?
RQ2 What elements should be included in a PTM identifier?
Theme 2: Discovery of naming anomalies
RQ3 How do engineers identify naming anomalies?
RQ4 How to automatically identify architectural anomalies?
Theme 1 focuses on understanding the naming practices of PTM packages in Hugging Face.

Theme 2 focuses on practical practices and a novel approach to automatically discover naming
anomalies.
4 Methodology
This section presents our methodology of a mixed-method approach to answer RQ1-3 [29]. We
conducted a survey study, then we substantiate with practical measurements in Hugging Face.
Details of RQ4 will be presented in §5.2. Figure 3 shows the relationship between RQs and methods.

Naming elements (RQ2)

Comparison to trad. SW (RQ1)

How to idenitify naming
anomalies (RQ3)

Survey 
(N=108)

PTM Naming

Automated anomaly
detection (RQ4)

Repo mining
(N=14,296)

DARA
Fig. 3. Relationship between RQs and research methodology.

4.1 Survey Study

This section presents our methods of survey study, including preliminary analysis (§4.1.1), instru-
ment design (§4.1.2), recruitment (§4.1.3), and analysis (§4.1.4).
4.1.1 Preliminary Analysis We conducted a preliminary analysis on 200 models to understand the
naming conventions of PTMs packages. Based on those results, we identified 12 naming elements
and 4 naming conventions (Table 4). We expanded our preliminary analysis to an additional 50
models and observed no emergence of new categories. Consequently, we determined that our
identified naming conventions and elements are comprehensive. The corresponding definitions
and examples are in Table 1.
4.1.2 Survey Instrument Design We developed our survey instrument following Kitchenham’s
guidelines for survey design [30]. We began with an extensive review of literature about software
naming [12–14] and PTM reuse [4, 23], shaping our initial survey instrument. The initial instrument
includes five sections: demographic questions, comparison between PTM naming and traditional
software engineering, PTM naming elements and conventions, and practices on naming anomaly
detection.
To improve the survey, we conducted two pilot studies. Firstly, we refined the initial version

through a pilot study with 3 subjects, aiming to enhance the clarity and logical flow based on
participant feedback. The pilot study took 15–20 minutes. Secondly, we conducted another pilot
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Table 1. Definition and examples of PTM naming components. Others were identified based on the results
of our pilot study.

Naming component Definition Example
Architecture [A] The foundational structure or design of the deep

learning model.
bert, albert, resnet

Model size [S] The model complexity e.g., # of parameters or archi-
tectural units.

50, 101, base, large,
xxlarge

Dataset [D] The specific dataset used for training or evaluation
of the model.

squad, imagenet

Dataset characteris-
tics [C]

The traits of the dataset, e.g., text casing, image di-
mensions.

case, uncased, 1024-1024,
244

Model versioning [V] The version of the model. v1, v2
Reuse method [F] The approach employed to adapt a PTM for down-

stream tasks.
fine-tune, distill, few-
shot

Language [L] The human language for which the model is trained
on.

english, chinese, arabic

Task [T] The problem or functionality the model is designed
to address.

qa, cls, face-recognition

Training process [R] The algorithm or approach used for training the
model.

pretrain, sparse

Number of layers [Y] The depth of the neural network in terms of layers. L-12, L-24
Number of parame-
ters [P]

The total number of trainable parameters in the
model.

100M, 8B

Other [O] A portion of the model name not classified above
categories.

demo, test

study to evaluate if we could get valuable data. We distributed the survey to 30 Hugging Face PRO
users and 100 ORG users in this pilot phase. However, the response rate was very low (1%). In
response, we consolidated numerous questions, particularly short-answer types, and restructured
the naming sections. Retesting with the initial 3 pilot participants, the revised survey took 5-8
minutes to complete.
The final survey in this study includes demographic questions and PTM naming practices. All

the questions in the survey are optional to answer. We also included the definition of PTM naming
(§2.2) as part of the survey. The final instrument is available in ??. Our study was approved by
institutional IRB.
4.1.3 Recruitment We compiled email addresses from Hugging Face’s PRO and ORG (i.e., organi-
zation) user accounts. PRO accounts mean that the users actively pay for the features provided
by Hugging Face. To filter for practitioners, we collected users from organizations which were
labeled as company, community, and non-profit, excluding university, classroom, and no labeled
organizations.
Our survey aimed to achieve a 95% confidence level with a margin of error of 10. Previous

statistics indicate that Hugging Face had over 1.2 million users by 2022 [31], and it kept increasing
in recent years. Therefore, we needed at least 96 participants to ensure statistical significance [32].

The prior statistic shows that Hugging Face has at least 1.2 million users as of 2022 [31]. For this
population, we require a minimum of 96 participants to achieve a confidence level of 95% with a
10% margin of error in our study.
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Hence, we sent out surveys in batches of 100 emails until reaching our desired sample size. In
total, we distributed our survey to 228 PRO users and 1,985 organization members. As an incentive,
each participant was compensated with a $10 gift card. 119 users responded to our survey (108
actively interacted with Hugging Face), resulting in a response rate of 5.4%. Table 2 gives subject
demographic information.

Table 2. Participant demographics (N=108 but some left blank.)

Type Break-down
ML Exp. <1 yr. (11), 1-2 yr. (24), 3-5 yr. (32), >5 yr. (36)
SE Exp. <1 yr. (6), 1-2 yr. (12), 3-5 yr. (22), >5 yr. (63)
Org. Size Small (1-50 employees, 58), Medium (51-250 employees, 19), Large (over 250

employees, 26)
Deployment Env. Web application (68), Desktop application (21), Cloud and data center (61),

IoT/embedded systems (12), Mobile (15), Other (6)
#used PTMs 0 (0), 1-5 (38), 6-10 (18), 11-20 (19), > 20 (28)
#created PTMs 0 (34), 1-5 (37), 6-10 (15), 11-20 (5), > 20 (12)

4.1.4 Survey AnalysisThemajority of our survey questionswere formulated asmultiple-choice/checkbox,
which are simple to analyze. Two open-ended textual responses required subjective analysis.

The first open-ended question, for RQ1, asked: “How is PTM naming similar/different from naming
traditional software packages such as those on NPM or PyPI? Why do you think that is?”. Responses
were lengthy and variable, so two analysts worked together to analyze them following thematic
coding methods [33]. First, the analysts independently performed memoing [34] to develop initial
themes. Next, they met to iteratively refine the set of themes (initial codebook). Then, they applied
the themes and assessed their reliability. The codebook was refined to merge some entangled codes
and discard rare ones. They did a second round of coding and then met to reach agreement on
disputes. They initially agreed on ∼65% of codes. On the rest, reaching agreement typically added
or subtracted one code from their joint set.
The second open-ended question, for RQ4, asked respondents to describe their practices for

identifying naming anomalies. The analysis was thus handled by a single researcher.
4.2 Practical Measurement in Hugging Face

4.2.1 Data Collection We use the latest PTM dataset named PeaTMOSS [9], which was collected in
August 2023. In our study, we focused on the identifiers of 14,296 PTM packages from PeaTMOSS
dataset which has over 50 downloads.
4.2.2 LLM Pipeline Design Large language models have demonstrated significant capabilities in
natural language understanding [35]. We developed a large-language model (LLM) pipeline using
the ChatGPT API (gpt-4-turbo) to measure the PTM naming practices.

Figure 4 illustrates the LLM pipeline we developed. In this process, we input the name of a PTM
package and employ two distinct prompts (§4.2.3, §4.2.3) to deduce the naming conventions and
elements associated with that name.

Following the methodology suggested by Zamfirescu et al. [36], we utilized a structured process
to design the prompt for our measurements. For each measurement, we first crafted a textual input
(i.e., prompt) and conducted a preliminary analysis on 20 randomly selected models. This process
underwent iterative refinement to achieve two primary objectives: (1) Ensuring the generated
output adheres to a well-defined, easily parsable format; (2) Optimizing the performance of the
output, evaluated through manual inspection.
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Prompt
(element)

        GPT-4-turbo

PTM Name

albert-base-v1

Prompt
(convention)A, S, V Impl. unit

Fig. 4. Example of input/output of GPT-4. Input is model names. Output is semantic patterns and confidence
level.

Initially, we incorporated element definitions from our survey into the prompt to clarify naming
conventions.We then enrich the prompt with definitions and examples for each specified component
to unify semantic naming patterns. We added several rules regulate the output format, and apply
few-shot learning, presenting example inputs alongside desired outputs. We report our evaluation
results in §4.2.3 and §4.2.3.
4.2.3 Evaluation In this section, we present the evaluation method and results of our two practical
measurements.

Measurement of Naming Elements We randomly sampled 300 models from the model list.
This gave a confidence level of 95%. One researcher manually labeled the semantic patterns of their
names. We compared our manual labels to the output from the pipeline, and calculated the F1-score
(91%). This indicate that our results have our results from the pipeline are reliable.

Table 3. Evaluation of naming element measurements. We evaluated the results from 300 randomly selected
names.

Element Precision Recall F1-Score

Architecture [A] 0.98 0.98 0.98
Model size [S] 0.96 1.00 0.98
Dataset [D] 0.94 0.89 0.92
Dataset characteristics [C] 1.00 0.74 0.85
Model versioning [V] 1.00 0.94 0.97
Reuse method [F] 1.00 0.87 0.93
Language [L] 0.95 0.92 0.94
Task [T] 0.90 0.91 0.91
Training process [R] 0.80 0.80 0.80
Number of layers [Y] 0.67 1.00 0.80
Number of params. [P] 1.00 0.96 0.98
Other [O] 0.87 0.81 0.84

Average 0.92 0.90 0.91
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Measurement of Naming Conventions To assess the efficacy of this measurement approach, we
initially established a ground-truth dataset. Following the definition in the survey, two researchers
independently annotated 200 PTM package names, resulting in an initial Kappa coefficient of 0.72
(substantial). After achieving consensus on the labels through collaboration, these agreed-upon
labels were established as the ground-truth for our analysis. We utilized this refined dataset to
assess the accuracy of our LLM pipeline. The detailed evaluation results are presented in Table 4.

Table 4. Evaluation of naming convention measurements. We evaluated the results of 50 randomly selected
names.

Naming Convention Precision Recall F1-Score

Impl. unit 0.79 0.94 0.86
App. or Task 1.00 1.00 1.00
Impl. + App./Task 0.92 0.73 0.81
Other 1.00 1.00 1.00

Average 0.90 0.89 0.89

5 Results and Analysis
RQ1: How is PTM naming different from traditional software package naming?

Finding 1: PTM naming is different from traditional naming.

88% of respondents perceive PTM naming to be different from traditional package naming.
The main difference is the greater semantic knowledge embedded in PTM names. The main
explanations for this difference were: (1) differences in evolution practices; and (2) different
information needed for reuse decisions.

A total of 52 respondents replied to the relevant survey (§4.1.4). We focused on the common case
(88%): responses describing differences. We analyzed responses in two ways: how the names differ,
and why the names differ.

Table 5 summarizes the codes and response frequency related to how names differ between PTMs
and traditional software packages. The primary difference was in the greater amount of semantic
knowledge in PTM names, as depicted in Table 1. A representative answer was “Pre-trained model
names often include more specific information about the model’s architecture, training data, and
performance. This...detail is not typically included in traditional...package names.” Other distinctions
were that subjects observed greater variation in PTM names (“The versioning system for models
seems less well-developed”), and that subjects saw different kinds of names between PTMs and
traditional packages: “PyPI can be sensible names, based on archetypal action, or fun names, based on
authors’ aesthetics”.

Table 5. Induced themes for how PTM names differ from traditional names. Based on code-able responses
from 34 participants.

Theme # Participants (%)
Contain more semantic knowledge 30 / 34 (88%)
More variation in PTM naming practices 5 / 34 (15%)
Kinds: Archetypal vs. aesthetic names 4 / 34 (12%)

Table 6 summarizes the codes and response frequency related to why names differ between
PTMs and traditional packages. The two main explanations were about evolution practices and
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Fig. 5. The surveyed (blue) and measured (orange) distribution of naming elements. The x-axis refers to the
codes from Table 1.

reuse practices. One subject described the influence of evolutionary practices on names as follows:
“[Traditional] packages are not usually as directly built on previous ones, with small extensions added
like for PTM. Finetuning models generally means that the outputs are similar to the base, unlike with
traditional packages.” With respect to the information needed for reuse, a representative quote was:
“Traditional software packages are supposed to contain an entire library...[with] various functions...and
configuration...PTMs are generally trained for a single objective...Therefore, [PTM] naming is critical
for readability and avoiding mistakes.”. Due to space limitations, other quotes are in the supplement
(??).

Table 6. Induced themes for why PTM names differ from traditional names. Based on code-able responses
from 37 participants.

Theme # Participants (%)
Evolution practice (“forking”) 18 / 37 (49%)
Information needed for reuse 18 / 37 (49%)
Conventional location of semantic info. 6 / 37 (16%)
Definition of versioning 4 / 37 (11%)
No standardization, “Wild West” 5 / 37 (14%)
Other 7 / 37 (19%)

RQ2: What elements to include in PTM identifiers?

Finding 2: Participants prefer naming by architecture/function.

Survey participants preferred naming pre-trained models based on architectural characteristics
and intended functions. There was less interest in incorporating training details.
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Figure 5 illustrates survey participants’ preferences for including specific elements in the naming
of pre-trained models (PTMs). The elements most favored are related to the model’s architectural
lineage: “Architecture” (69, 63.9%), “Model size” (62, 57.4%), and “Task” (57, 52.8%). This highlights a
strong preference for names that convey the model’s high-level implementation details, facilitating
easy identification and distinction, This is usually a starting point of PTM reuse as indicated by
Jiang et al. [4]. A smaller yet significant number of users want low-level details, including model
versioning (52, 48.1%), number of parameters (46, 42.6%), language (39, 36.1%), and training dataset
(30, 27.8%). These elements are relevant to model selection and evaluation.

Comparing survey participant preferences with real PTM names (orange/blue bars in Figure 5),
we see that naming practices do not always match naming preferences. Almost all models include
Architecture (A) information, though only ∼60% of respondents prefer it. Many respondents value
information such as task (T), version (V), and parameter count (P); these elements are comparatively
rare in real model names.

Finding 3: Design purpose is important in PTM naming.

The survey suggests a preference for names that combine details about both the implementation
and the application or task (60.2%), while actual PTM packages tend to be named solely based
on implementation units (59.0%).

Impl. +
 App./Task

Impl.
unit

App./Task Other
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10

20
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40
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)

Survey data
Practical data

Fig. 6. The surveyed (blue) and measured (orange) distribution of naming conventions.

Figure 6 displays engineers’ preferences for naming conventions in the context of reusing PTMs.
The most preferred convention (58, 60.2%) combines “implementation + application/task” (e.g.,
Llama-2-7b-chat-hf), with “Application/task” following (41, 23.3%). This suggests engineers favor
names that reflect both the intended purpose and the implementation specifics of PTM packages.
These patterns are rare in practice (only ∼35% and ∼5% of models) — PTM names tend to share
only implementation details (59%). PTM users’ preferences are misaligned with naming practices.
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RQ3: How do engineers identify naming anomalies?

Finding 4: Users manually look for naming anomalies with model metadata and architecture inspection.

PTM users identify naming anomalies by reading both internal (69%) and external (11%) informa-
tion provided by the PTM package. Around half of users (46%) inspect it, e.g., via measurement
or visualization.

A total of 52 respondents replied to the survey question corresponding to this RQ (§4.1.4). Table 7
summarizes the codes and response frequency for how to identify PTM naming anomalies. PTM
users described two approaches: (1) reading internal/external information about the PTM; and (2)
downloading and inspecting the PTM.

Table 7. Actions for identifying PTM naming anomalies, mentioned by multiple participants. The third
column shows the number of participants who mentioned each process. 52 (out of 108) participants answered
this question.

Action # Participants (%)

Read metadata included with PTM 36 / 52 (69%)
Read external information about PTM 11 / 52 (21%)
Inspect the PTM 24 /52 (46%)

Most participants mentioned that they check for anomalies by reading information provided by
the PTM packages. A large proportion of the participants (36/52, 69%) mentioned that they identify
the naming anomalies by “reading the model cards” and other metadata included with PTM, and
comparing the data with the elements in PTM names. The metadata available in the config.json

file is another primary source for verifying the accuracy of naming elements. Those metadata
are “the ultimate source of truth because models can lack model cards”. Some participants (11/52,
21%) also mentioned that they refer to external information about PTM, including research papers,
discussion forum, and issue reports. The external information can provide the users with more
detailed information, e.g., whether other people have already verified the naming elements for that
PTM.

About half of the participants (24/52, 46%) mentioned that they inspect PTMs to identify naming
anomalies. This inspection often involves “visualizing/summarizing the model architecture”, “running
[the model] on actual data/examples”, and “examining the memory usage”. They said that visualization
or manual inspection of PTMs makes it “obvious if the architecture is different to what the model
name says”. When running the inference of the model, the users can verify if “the memory usage
matches their expectations”, or “if there is any substantially decreased performance”. It is also obvious
to find naming anomalies, particularly for the task and application goals, “if the model is unable to
perform the given task/achieve the mentioned goal”. Although costly, these hands-on approaches
ensure that the model’s capabilities match its description.
RQ4: Automatically identifying architectural anomalies?

Finding 5: Architectural information helps with naming anomaly detection.

We developed an automated tool to automatically identify naming anomalies. Our result shows
that we can effectively (92.18% accuracy) detect naming anomalies based only on architectural
information.

From RQ4, we learned that PTM users are concerned about naming anomalies, and that their
current checking approaches are either cursory (reading metadata and external information)
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Fig. 7. To identify naming anomalies, we propose an algorithm of DNN ARchitecture Assessment pipeline
(DARA). Our goal is to automatically identify naming anomalies. To achieve this goal, we automatically
identify the architectural variations among multiple PTMs, subsequently train a classifier, and use that to
identify naming anomalies. Anomalies are defined as mismatches between the prediction and the label
assigned by the PTM creator. We evaluate DARA on two labels: model_type and architecture.

or costly (visual inspection or measurement of the PTM). Here we investigate the automatic
detection of naming anomalies. Historical approaches to finding anomalous names in software have
predominantly been rule-based [37–39]. Machine learning-based approaches are achieving state-
of-the-art performance. For instance, Pradel et al. approached the problem of naming-based bug
detection using binary classification [40]. They proposed a method for identifying and correcting
naming-related issues in source code by mining name patterns from extensive codebases. This
approach uses a classifier trained with a small dataset to achieve high precision in real-world
repositories [41].

Inspired by these approaches, we propose amachine learning-based approach to detect anomalous
names in PTM packages. We discuss feature selection (§5.1), feature extraction (§5.2), and evaluation
on the PeaTMOSS dataset (§5.3).
5.1 Feature Selection
Table 8 presents a compilation of factors influencing the creation of newmodel types or architectures
by PTM developers. More than one-third of the survey respondents believe that alterations such
as modified training protocols, changes in input/output dimensions, layer additions or removals,
modifications to the tokenizer, and shifts in the training dataset significantly contribute to the
generation of new PTM names. If the typical engineer acts on these beliefs, then their naming
function could be mathematically represented as:

𝑓 (layer connections, layer parameters, tokenizer,
training regime, dataset) = model_type/architecture (1)

Table 8. What changes necessitate new PTM names?

Theme # Part. (%)
Modified training regime 43/108 (40%)
Modified tensor shape 34/108 (31%)
Modified layers in the main body 33/108 (31%)
Addition/deletion of layers in the main body 33/108 (31%)
Changed training dataset 31/108 (29%)
Modified tokenizer 31/108 (29%)
Addition/deletion of layers in IN/OUT layers 26/108 (24%)
Other 4/108 (4%)

The survey data suggests that the model_type and architecture are determined by several
factors. However, prior study on PTM reuse suggested that there is a lot of missing metadata from
the model cards on Hugging Face [9, 22]. Hugging Face does not provide enough details about
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(a) (b) (c)

Fig. 8. (a) Visualization of selected PTM features, illustrating their sparse and high-dimensional distribution.
Confusion matrix of evaluation results categorized by (b) model_type, and (c) architecture. The trend is visible
from the colormap — see artifact for larger versions.

training regime and a lot of dataset information is missing, and the non-transparency reduced
the trustworthiness and reusability of PTM packages [4]. The primary information provided by
Hugging Face encompasses tokenizer details, pre-trained weights, and the labels for model_types
and architecture, which leads to the following hypothesis:

Hypothesis: Using only architectural information, we can effectively detect naming anomalies.

To test this hypothesis, we evaluate an automated technique that extracts layer connection and
parameter information, and then learns the relation between these features and the human labels
fromHugging Face.We consider performance of over 75% (heuristic) as supportive of the hypothesis,
indicating that further refinement could make the approach feasible for a model registry to use to
automatically detect naming anomalies.
5.2 DNN Architecture Assessment (DARA)

5.2.1 Overview Figure 7 presents the DNN ARchitecture Assessment (DARA) workflow. The
process begins with open-source pre-trained weights. First, we load each weight and feed dummy
inputs to outline the graph architecture of each Pre-trained Model (PTM). Next, we transform
the computational graph into an abstract architecture and implement n-gram feature extraction.
Utilizing these features, we train a CNN classifier to identify naming anomalies.
5.2.2 Feature Extraction It is insufficient to identify naming anomalies solely based on the identifiers
(§5.1). In this section, we present our feature extraction techniques, including graph conversion,
delineation of abstract architecture, and n-gram feature selection.

Graph Conversion We developed an automated pipeline to transform pre-trained weights into
computational graphs. Existing work shows that Pytorch is the dominant framework in Hugging
Face [26], and using Hugging Face API we will load the PyTorch model by default [19]. Due to
PyTorch’s dynamic structure, we introduce dummy inputs to the models to construct and trace the
computational graphs effectively [42]. We refined our automated pipeline by iteratively adjusting
dummy inputs: if a conversion failed due to the input, we incorporated a new input type into
our input list. Consequently, our finalized pipeline employs fixed language inputs while utilizing
random tensors for models in the vision and audio domains. threat about this in §6
We conceptualized all neural network graphs as directed acyclic graphs (DAGs), enhancing the

comprehensive and efficient application of algorithms. To handle cycles in models like LSTM [43],
we remove upstream or backward edges, turning every network into a DAG with “complete
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reachability.” In this configuration, each node is connected through a path from an input to an
output, guaranteeing that our algorithm covers all functional layers.

Abstract Architecture Prior work proposed abstract neural network (ANN) [44]. We proposed a
similar concept, abstract PTM architecture (APTM). This new concept not only includes information
about layers, parameters, and input/output dimensions but also incorporates detailed information
about the connections between nodes, offering a fuller depiction of the model’s architecture. This
enhancement is pivotal for our n-gram feature selection method.

N-gram Feature Selection We propose a method for vectorizing PTM architectural information
using two fundamental components that define their architecture: layer connections, and layer
parameters. These aspects include the structural configuration of each PTM, such as pairs of con-
nected layers (e.g., (Conv2D, BatchNormalization)), and specific layer attributes (e.g., <kernel_size:
[1, 1]> in a Conv2D layer). Following prior works [45–47], we apply an N-gram feature extraction
method to convert the architectural characteristics of each DNN into vector form. Specifically,
we employ 2-grams for analyzing layer connections and 1-grams for detailing layer parameter
information. Our goal is to find a good unsupervised feature for PTM architectures accurately
and efficiently [48]. We also experimented with 3-gram methods for feature extraction; however,
we found that the process was notably slow, and the resulting features were overly sparse and
high-dimensional, suggesting this method is unsuitable for extracting features from PTM architec-
tures. Subsequently, we apply padding to standardize the length of features across all PTMs. This
innovative approach provides a structured and detailed basis for analyzing and comparing PTM
architectures. The selected features of our sampled data is presented in Figure 8a.

5.2.3 CNN Classifier for Anomaly Detection We designed a Convolutional Neural Network (CNN)
classifier for anomaly detection in the PTM dataset because this approach has been shown effective
on similar tasks [49, 50]. We use an 80-20 split for training and evaluation. The classifier consists
of four fully connected layers. We systematically implemented a grid search to optimize the
hyperparameters for DARA. The final training parameters include 40 epochs, a learning rate of
1e-3, Cross Entropy loss, and a step-wise LR scheduler. Batch sizes are 256 for training and 32 for
evaluation. We improved model validation using 5-fold cross-validation on the shuffled dataset.

5.2.4 Evaluation Methodology In this section, we demonstrate the effectiveness of our proposed
anomaly detection method (DARA). We note that this is the first known approach to detect PTM
naming anomalies so there is no baseline for comparison.
Our evaluation focuses on two key naming labels: model_type and architecture (§2.2). We

evaluate DARA on a sampled data from the PeaTMOSS dataset by calculating the accuracy of the
prediction of the trained classifier [9]. There are totally 132 architectures which has over 50 PTM
instances. We randomly selected 50 architectures from the dataset (50/132, 38%). During feature
extraction, we were unable to load the PTMs from four architectures, e.g., Bloom [51], because
their model sizes are too large to be loaded on a single A100-80GB GPU. This resulted in 46 unique
architectures. We were also unable to load another 600 PTMs across these 46 categories because
either our dummy inputs could not be used to those models, missing configuration files, or their
architecture included customized code which we cannot fully trust. Overall, we collected 1,700
PTM packages from 46 architectures and 30 model types.
During training and evaluation of DARA, we changed the model_type and architectures of the

categories which had less than 20 data as Others. This reduced the total number of architectures to
40, and model_types to 27.
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5.3 Results and Analysis

Results: Our results indicated that DARA can proficienetly identify anomalies in model_type with
an accuracy of 92.18% (Figure 8b). DARA’s ability to discern anomalies in architecture is moderate,
achieving an accuracy of 67.47% (Figure 8c).
Analysis: Figure 8b shows the cases where DARA cannot predict correctly in model_type. In

fact, these models share almost the same architectural designs and the only differences are either
different training regimes, different datasets, or using different representations. The n-gram feature
extraction approach was not able to consider these distinct PTM features.
Figure 8c shows the cases where DARA cannot predict correctly in architectures. The same

incorrect case arises for the four Audiomodels. Furthermore, we can also find that DARA can not cor-
rectly distinguish between different tasks as part of the architecture, such as TokenClassification,
QuestionAnswering, and SequenceClassification in language models. Previous work indicates that
the final layers of PTMs are highly task-specific [52]. Therefore, due to the high similarity of
PTMs’ features across these tasks, with differences confined to the final layers, DARA struggled to
effectively differentiate between these categories.
The evaluation results of DARA indicates that DARA is capable enough by only using the

architectural information (e.g., layer connections and layer parameters) to detect naming anomalies,
specifically in model_type and architecture. This result supports our hypothesis and we can only
use the architectural information for naming anomaly detection.

Table 9. 5-fold cross-validation result for DARA.

Label Type Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Avg. Acc.

Model_type 92.65% 92.65% 93.53% 89.41% 92.65% 92.18%
Architecture 68.24% 67.65% 71.47% 60.88% 69.12% 67.47%

6 Threats to Validity

Construct We operationalize the concept of PTM names in terms of the identifier and architecture.
Alternative operationalizations might incorporate package type or package contents. However, per
the registry naming taxonomy (Figure 2), we believe our operationalization covers the elements
that involve judgment on the part of the namer.
Internal A key internal threat to validity pertains to the reliability of measurements using GPT-
based approach. Although DARA can identify naming anomalies, the features used by the DARA
algorithm are weak. N-grams discard much information about the PTM architecture.
External In the practical measurements of naming practices, we only included attributes that we
collected from PeaTMOSS, which is primarily focused on data from the largest PTM ecosystem,
Hugging Face. Thus there is a slight risk of not being generalizable to other PTM ecosystems.

7 Discussion and Future Work
We discuss three directions for further work.

To Improve DARA Although DARA can identify real naming anomalies, the features used by the
DARA algorithm are weak. For example, it cannot reflect the differences of training regime and
datasets between different PTMs. In future work, we propose to develop stronger feature extraction
methods by converting the architecture to embeddings. For example, contrastive learning [53] could
be used to mitigate some of the weaknesses. Recent advancements have also unveiled techniques
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for encoding directed graphs directly using transformers [54]. Applying these feature extraction
techniques could improve DARA’s ability to detect naming anomalies more effectively.

To Support Model Search and Reuse Our dataset of abstract PTM architectures includes meta-
features suitable for various tasks, such as identifying potentially mislabeled architectures. Nguyen
et al. demonstrated the utility of meta-features from PTM implementations on GitHub for enhancing
AutoML performance [44]. Studies have also explored effective support and reuse of PTMs through
novel model selection methods [55–57]. We propose adapting DARA to extract additional meta-
features (e.g., intermediate outputs) and devise techniques to support large-scale AutoML and
efficient model selection, ultimately simplifying PTM adoption.

To Improve Trustworthiness Recent studies have highlighted growing concerns about vulnera-
bilities within PTM packages, such as “typosquatting” [58, 59] and “backdoors” [60, 61], exploiting
these naming variances to introduce malware. Microsoft indicated that good naming practices can
potential to expedite the detection and removal of malware [62]. Our study not only sheds light
on the intricacies of PTM naming patterns but also sets the stage for future research to leverage
additional meta-features of PTMs, thereby bolstering our ability to pinpoint and address PTM
anomalies effectively.
8 Conclusion
Pre-Trained Models (PTMs) are a new unit of reuse in software engineering, where naming practices
practices significantly impact their reusability. Similarly to prior reuse units, engineers struggle
to name PTMs well. We conducted the first study of PTM naming practices by a mixed-method
approach, including a survey and a repository mining study. Our finding shows that PTM naming is
different from traditional naming in terms of evolution practices and reuse decisions. We also show
that engineers prefer PTM naming with architecture/function, and design purpose is important in
PTM naming. PTM users look for naming anomalies using metadata and manual inspection. Our
tool applies a novel feature extraction method and indicated that we can effectively detect naming
anomalies with only architectural information. There are many opportunities for future work
to support engineers: in best practices for naming, in model search, and in improved automated
naming anomaly detection.
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