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Abstract— Due to the cost of developing and training
deep learning models from scratch, machine learn-
ing engineers have begun to reuse pre-trained models
(PTMs) and fine-tune them for downstream tasks. PTM
registries known as “model hubs” support engineers
in distributing and reusing deep learning models. PTM
packages include pre-trained weights, documentation,
model architectures, datasets, and metadata. Mining
the information in PTM packages will enable the discov-
ery of engineering phenomena and tools to support soft-
ware engineers. However, accessing this information is
difficult — there are many PTM registries, and both the
registries and the individual packages may have rate
limiting for accessing the data.

We present an open-source dataset, PTMTorrent, to
facilitate the evaluation and understanding of PTM
packages. This paper describes the creation, structure,
usage, and limitations of the dataset. The dataset
includes a snapshot of 5 model hubs and a total of
15,913 PTM packages. These packages are represented
in a uniform data schema for cross-hub mining. We
describe prior uses of this data and suggest research
opportunities for mining using our dataset.

The PTMTorrent dataset (v1) is available at:
https://app.globus.org/file-manager?origin_id=
55e17a6e-9d8f-11ed-a2a2-8383522b48d9&origin_
path=%2F%7E%2F.

Our dataset generation tools are available on GitHub:
https://doi.org/10.5281/zenodo.7570357

Index Terms—Open-Source Software, Data Mining,
Machine learning, Empirical software engineering

I. Introduction

Modern software systems reuse Deep Neural Net-
works (DNNs) to build intelligent and adaptive sys-
tems [1, 2]. Engineering a DNN from scratch is chal-
lenging for many reasons, including the variation in
deep learning libraries [3, 4] and the high expense
of training models [5]. Organizations and developers
can address some of these challenges and reduce the
cost and effort associated with DNN development by
reusing pre-trained DNN models (PTMs) [6, 7]. PTMs
are shared via deep learning model registries, which
are modeled on traditional software package reg-
istries such as NPM [8]. These PTM packages include
reusable components, such as model architectures,

§Authors contributed equally.

weights, licenses, and other metadata. Deep learning
model registries enable engineers to develop their
models with re-usability in mind [9, 10]. Although PTM
reuse is still in its early stages, the most popular PTMs
are downloaded millions of times each month [11, 12].

As PTM reuse becomes more widespread, the en-
gineering community will benefit from research into
PTM reuse practices, challenges, and tools [11, 12].
By analogy to traditional software, mining PTM soft-
ware repositories can help us understand develop-
ment trends [13–15] and usage patterns [16, 17]. How-
ever, mining the software repositories associated with
PTM packages is difficult for three reasons related to
data availability. First, researchers must look in many
places — PTM packages are distributed across many
competing PTM registries [11]. Second, researchers
must access the packages — PTMs include complex
DNN models and weights with sizes over 1 TB, and
access to these packages may be hindered by throttling
or rate limiting [18]. Third, for scientific replicability,
this large-scale data needs to be hosted long-term.

To enable mining of PTM packages, we share PTM-
Torrent, the first many-hub dataset of PTM packages.
PTMTorrent contains 15,913 PTMs from 5 different
PTM registries identified in our prior work [11]: Hug-
ging Face [19], Model Zoo [20], PyTorch Hub [21],
ONNX Model Zoo [22], and Modelhub [23]. Our dataset
is hosted on a high-performance storage system (HPSS)
maintained by Purdue University’s Research Comput-
ing center. The dataset includes the metadata of each
PTM and the package histories for each GitHub reposi-
tory. These packages are represented in a uniform data
schema for cross-hub mining. Out dataset supports
many directions for further research, including studies
of the PTM supply chain, PTM package evolution, PTM
mining tools, and DNN architectural trends.

II. The PTMTorrent Dataset

A. Data Source

In prior work we mapped the major model hubs and
indicated that there exist open, gated, and commercial
hubs [11]. Open and gated hubs tend to be larger and
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Fig. 1: Data collection and preprocessing workflow for PTMTorrent. We standardize the PTM metadata by using a data
schema, collecting it from PTM packages and the corresponding GitHub repository.

more widely used because they accept contributions
from anyone, and can be accessed by anyone. Commer-
cial hubs are offered by individual companies to share
vetted models with their clients. Due to the limited
access to commercial model hubs, we only provide a
snapshot of the open hubs (Hugging Face) and some of
the gated hubs (Model Zoo, PyTorch Hub, Modelhub,
and ONNX Model Zoo).

The PTMTorrent dataset contains the repository his-
tories of 15,913 PTM packages available as of Jan-
uary 2023. They are provided as complete git clones,
resulting in a compressed footprint of ~61TB. Each
PTM package was cloned at its most recent version,
including the model card, architecture, weights, and
other information provided by the maintainers (e.g.,
training configuration, hyper-parameters).

Figure 1 indicates the collection and preprocessing
approaches of our dataset.

We collected PTM packages from all open and gated
model hubs per Jiang et al. [11], excluding TensorFlow
Hub because it does not support version control fea-
tures. We downloaded all PTM packages from Model
Zoo, PyTorch Hub, ONNX Model Zoo, and Modelhub.
Due to the size of Hugging Face, we downloaded
only the top 10% most-downloaded PTMs.1 Overall,
our dataset contains 15,913 packages from 5 PTM
registries, distributed as described in Table I.

TABLE I: Details about the PTMTorrent content for
each of the 5 model registries we collected.

Name # Models Data Size

Hugging Face [24] 12,401 61TB

Model Zoo [20] 3,245 115GB

PyTorch Hub [21] 49 1.5GB

ONNX Model Zoo [22] 185 441MB

Modelhub [23] 33 721MB

PTMTorrent 15,913 ~61TB

1Although we collected a small amount of the full Hugging Face
registry, this “top 10%” snapshot includes all Hugging Face PTMs
with over 30 downloads.

B. Data Schema

Figure 2 shows the overview of the data schema we
used to standardize the dataset. We extracted com-
mon entities into a general PTM schema. Each PTM
registry has some custom features, so we customized
the schema slightly for each model registry. The full
data schema is encoded following the JSON Schema
format,2 and is available in the GitHub repository as-
sociated with this project.

C. Data Storage

As shown in Table I, the entire PTMTorrent dataset
(v1) needs ~61TB of storage space. A cost-effective
storage system is required to serve this dataset. Com-
mercial services are cost-prohibitive at this scale, e.g.,
we estimated a monthly cost of over $1000 to store
and serve this dataset from Amazon Web Services.
We opted instead for an internal resource available
at Purdue University: the Purdue Fortress tape-based
hierarchical storage system.3 To facilitate external dis-
tribution of our dataset, we offer a Globus share [25]
named PTMTorrent.

D. Maintainability and Extensibility

The sizes of PTM registries are increasing rapidly.
For example, Hugging Face provided 63,182 public
PTM packages on August 2022, and now it provides
124,427 packages. We believe the number of open-
source PTM packages will increase in the foreseeable
future. Therefore, maintainability and extensibility are
two important properties of PTMTorrent.

The PTMTorrent dataset is designed to be maintain-
able by re-running our scripts to gather any additional
changes that may have been made to the PTM registry
since its last collection. Expect a biannual update.

For extensibility, new model hubs can be incorpo-
rated into the dataset. We follow an open-source model

2See https://json-schema.org/draft/2020-12/json-schema-core.html
3For more information about Fortress, see https://www.rcac.

purdue.edu/knowledge/fortress/overview. Our GitHub repository in-
cludes a guide on how to access data stored in Globus.
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and will review Issue and Pull Request contributions on
GitHub. The PTMTorrent data schema captures most
elements of a PTM package, though some special-
ization is needed. The downloaders for a new model
hub can be developed based on the examples of the
already-supported model hubs in our open-source data
collection tools. An extender must provide 2-4 scripts
following the pattern we used on the other hubs.

III. Originality and Relevance

Prior works have extracted information from open-
source projects to a dataset and provide it for future
analysis, such as GHTorrent [26], TravisTorrent [27],
and RTPTorrent [28]. These datasets can be used for
further mining software repository researches and help
the community better understand open-source soft-
ware projects [14, 15, 29, 30].

Similarly, our dataset captures the open-source PTM
packages from many model hubs. The structure of
our dataset imitates prior datasets that were focused
on traditional open-source software [26, 28]. Compared
to prior work, PTMTorrent focuses on PTM packages,
including the metadata, architecture, dataset, and per-
formance metrics. Our dataset provides a way for users
to efficiently download and access large amount of data
on PTM packages and relevant repositories.

IV. Usage Examples

A. Prior Usage in the Literature

In prior work, we used a part of PTMTorrent (the
Hugging Face part) to measure potential risks in the
Hugging Face model registry [12]. We measured the
dependencies of model architecture and datasets, PTM
documentation, and GPG commit signing in Hugging
Face PTMs. Our analysis identified potential software
supply chain concerns facing PTM reusers, including
spoofing, tampering, and repudiation.

In prior work, we also used metadata from Hugging
Face to measure model discrepancies and maintainers’
reach [11]. Our analysis showed that existing defenses
appear insufficient for ensuring the security of PTMs.

The PTMTorrent dataset provides more opportunities
for mining PTM data by covering more PTM registries
and providing greater structure. We believe that these
large amount of PTM packages can be analyzed in
similar ways as traditional packages [31–33].

B. Applying an Existing MSR Tool

Since PTMTorrent consists of git repositories, it is
possible to use existing software repository mining
tools on the PTM packages. Our GitHub repository
includes a demonstration of this. We used our PRIME
tool [34] to analyze software process metrics on a
subset of the dataset.

V. Limitations

PTMTorrent is incomplete. It is biased towards
the top 10% most-downloaded PTMs in HuggingFace
(though this is almost all PTMs with any downloads,
cf. §II-A). There are other model hubs, such as Papers
With Code [35], PINTO Model Zoo [36], and Jetson
Zoo [37]. Beyond these, there are other deep learning-
specific registries that lack versioning or packaging
features. The initial PTMTorrent release provides PTMs
from model hubs that are similar to traditional software
packages, as defined by Jiang et al. [11]. We leave their
capture for future work.

Another limitation of our data is the non-
standardized granularity. The current version of
PTMTorrent lacks detailed metadata and does not
provide uniform information, e.g., datasets, model
architectures. During the data collection, we notice
that the provided information from PTM registries
can be quite different and we use customized data
schemas for each PTM registry. As a result, it is
difficult to analyze all the PTM packages under the
same umbrella when using our dataset.

For example, Hugging Face provides detailed doc-
umentation and structured metadata, as well as rel-
evant configuration files for each PTM, while ONNX
Model Zoo provides PTM metadata through unstruc-
tured Markdown files. Thereby making metadata ex-
traction challenging. To mitigate this problem, we have
a parent data schema for all the PTM registries and
child schemas for each specific registry that represents
their custom data.

VI. Future Work

In addition to the risk measurements presented by
Jiang et al. [11, 12], the PTMTorrent dataset can be
used in different ways. We suggest three research
directions: PTM supply chain analysis, tools for PTM
reuse, and mining tool development.

A. Supporting Future PTM Supply Chain Analysis

Prior work has focused on understanding the charac-
teristics of package registries and their supply chains.
Zimmermann et al. analyzed the metadata of NPM
packages and identified the potential threats on down-
stream users [31]. Ladisa et al. proposed an attack
taxonomy on open-source supply chains, including
code contributions to package distribution [38]. Sim-
ilar studies are also important in PTM supply chain
alongside studies focused on PTM-specific aspects. We
propose that future studies can analyze PTMTorrent
dataset to understand the characteristics of the PTM
supply chain, including the dependency analysis [31],
vulnerabilities [39], and code knowledge transfer [40].



PTM Torrent
Id: integer
Modelhub: object
ModelName: string
ModelURL: string
ModelOwner: string
ModelOwnerURL: string
LatestGitCommitSHA: string
ModelPaperDOIs: string[] [0..1]
ModelTask: string [0..1]
ModelArchitecture: string [0..1]
Datasets: object[] [0..*]

Dataset
DatasetOwner: string
DatasetURL: string
DatasetOwnerURL: string
DatasetName: string
DatasetPaperDOI: string [0..1]
DatasetUsages: string[] [0..1]

HFTorrent
modelId: string
sha: string
lastModifed: string
tags: string[]
pipeline_tag: string
siblings: object[]
private: boolean
author: null
config: object
securityStatus: null
_id: string
id: string
cardData: object
likes: integer
downloads: integer
library_name: string

CardData
tags: string[]
language: string
license: string
datasets: string[]

Config
architectures: string[]
model_type: string

Sibling
rfilename: string
size: null
blob_id: null
lfs: null

PTTorrent
Id: integer
ModelName: string
ModelAuthor: string
ModelDescription: string
ModelURL: string
GitHubURL: string
ColabURL: string
DemoURL: string

MZTorrent
slug: string
title: string
description: string
stars: integer
link: string
framework: string enum
categories: object[]

Category
id: integer
slug: string enum
title: string enum
short_title: string enum

MHTorrent
Id: string
name: string
type: string
github: string
github_branch: string enum
backend: string[]
gpu: boolean

ONNXTorrent (Hub)
Id: integer
ModelClass: string
ModelREADMEPath: string
RepoREADMEPath: string
Paper: string
Description: string
HFSpaceURL: string
Category: string

ONNXTorrent (Model)
Id: integer
Model: string
ModelSize: string
ModelPath: string
Paper: string
ONNXVersion: string
Accuracy: string
Dataset: string enum
OpsetVersion: string
Category: string enum
Github URL: string
ModelSampleSize: string
ModelSamplePath: string

Modelhub
ModelHubURL: string
ModelHubName: string
MetadataFilePath: string
MetadataObjectID: integer

Fig. 2: An overview of PTMTorrent’s data schema. Each model hub shares a general schema (grey boxes), with hub-specific
data stored in customized schema (colored boxes). The full schema is available in JSON in the dataset generation repository.

Recent advances in AI, such as ChatGPT [41], that
clearly build upon composing various PTMs strongly
suggest that being able to study how PTMs and are
composed to build more complex systems (a trait
shared with traditional software) will become more
important. We hope our dataset will aid in performing
such analyses.

B. Expanding PTM Model Registry Analysis

Researchers can extract more information from
these model registries by reusing or developing soft-
ware metrics for PTM packages, including provenance,
reproducibility, and portability [12]. PTM registries can
help us develop comprehensive attributes and provide
these details in the PTM dashboard, similar to the
measured attributes from NPM [42] and PyPi [43].

Our prior study has indicated that engineers can
have trouble finding the best PTM that matches their
requirements, and it can therefore be hard to identify
the portability and reproducibility of the open-source
PTMs [12]. Montes et al. shows that there exist notable
discrepancies among different model zoos [44]. With
more detailed and comprehensive metadata provided
for each PTM and the corresponding usage patterns on

downstream tasks, it will be possible to develop a rec-
ommender system to help engineers find the right set
of PTMs for a given application and requirements [45].
PTM Registry contributors can develop sophisticated
visualization tools—with the aid of our dataset—that
help PTM users understand the strengths and limita-
tions of each model.

C. Furthering the State of Mining Tool Development

Given the lack of standardization among different
PTM registries (§V), it was challenging to standardize
all the metadata. PTMTorrent may not have everything
needed for every type of analysis. Researchers can
augment the dataset during the data collection and
processing stage for other subsequent mining needs.
We have included the relevant GitHub pages of each
PTM in out dataset, and therefore the extraction can be
done either based on the provided documentation from
PTM registries [46] or source code from the underlying
repositories [47].
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