
Reusing Deep Learning Models: Challenges
and Directions in Software Engineering

George K. Thiruvathukal, Professor and Chairperson
Loyola University Chicago, Computer Science Department
Visiting Computer Scientist, Argonne National Laboratory

(w) https://gkt.sh (e) gkt@cs.luc.edu

1

Co-Authors: James C. Davis*, Purvish Jajal*, Wenxin Jiang*, Taylor
Schorlemmer*, Nicholas Synovic+, and George K. Thiruvathukal+

*Purdue University +Loyola University Chicago

We acknowledge financial support from Google, Cisco, and
 NSF awards 2229703, 2107230, 2107020, and 2104319.

https://gkt.sh
mailto:gkt@cs.luc.edu

Talk overview

2

1. Software Engineering Refresher

2. Machine Learning and Pre-Trained Models

3. Reuse Challenges

4. Future Directions

5. Additional Reading

Software Engineering Refresher

“Software Engineering is (1) the application of a systematic, disciplined,
quantifiable approach to the development, operation, and maintenance

of software; that is, the application of engineering to software

and (2) the study of approaches as in (1)”

IEEE Standards Collection: Software Engineering, IEEE Standard
610.12-1990 and Pressman, Software Engineering, 7th Ed.

This forward-looking definition of SE from 1993 (IEEE!) speaks to the
importance not only of software methodology but also the study of how

software comes to be.

Machine learning software is still software by any other name and is
therefore worthy of further study and community attention.

Retrospective: What is Software Engineering?

4

Two Primary Kinds of SE Research

5

Solutions

Open problems

Observations

Machine Learning and Pre-Trained
Models

What is a Neural Network?

8

https://srnghn.medium.com/deep-learning-overview-of-neurons-and-activation
-functions-1d98286cf1e4

https://srnghn.medium.com/deep-learning-overview-of-neurons-and-activation-functions-1d98286cf1e4
https://srnghn.medium.com/deep-learning-overview-of-neurons-and-activation-functions-1d98286cf1e4

Huge models, huge training costs (and growing)

Patterson et al., 2021 "Carbon emissions and large neural network training." arXiv preprint arXiv:2104.10350 (2021).
Gholami et al. 2021: https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
Strubell et al. 2019: https://arxiv.org/pdf/1906.02243.pdf

Carbon footprint
costs measured
using BERT in 2019

60M parameters 110M parameters 175B parameters

GPT-4 ~170T parameters

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
https://arxiv.org/pdf/1906.02243.pdf

Pre-trained neural networks

10

PTNN: A neural network that is already parameterized for an application

Example use: Transfer learning

PTMs vs. Traditional Software Package Reuse

11

HuggingFace

npm

PyPi

• A model hub is a hosted platform of pre-trained models (PTMs)
and datasets organized by problem domain.

Model Hubs

What is a model hub?

10,000,000+
1
2

Reuse Challenges

Deep neural network reuse is the process of using existing DNN technology for another purpose.

We focus on three distinct types: conceptual reuse, where existing theory is repurposed;
adaptation reuse, where existing DNN models are modified; and deployment reuse where

existing DNN models are converted for use in a new environment.

 Dashed boxes provide examples of each type.

Three Types of Reuse

14

Conceptual Reuse

Replicate and reengineer the algorithms, model architectures, or other
concepts described in academic literature and similar sources, integrating the

replication into new projects.

Adaptation Reuse

Leverage existing DNN models and adapt them to solve different learning
tasks.

Deployment Reuse

Convert and deploy pre-trained DNN models in different computational
environments and frameworks.

Reuse in Deep Learning (DNNs)

15

Model Structure

16

Components of a deep neural network (DNN), represented at
different levels of abstraction. A DNN is a composition of

weighted operations. These are combined into a layer; a group of
layers into a block; and a group of blocks into a sub-graph such as

a backbone or a head.

Conceptual Reuse

17

Replicate and reengineer the
algorithms, model

architectures, or other concepts
described in academic literature
and similar sources, integrating

the replication into new
projects.

Data Pipelines

18

Well established pattern from
industry.

 Illustration of a data pipeline
following the Extract-Transform-Load

design pattern.

 The specific pipeline is for the
You-Only-Look-Once (YOLO) model

family (computer vision)

Reproducibility of Results

Reproducibility is considered a key quality of machine learning software, yet
achieving DNN reproducibility remains a challenging task and continues to be a

focal point within the research community.

Many SOTA models are prototype stage. This stage is typically characterized by an
absence of rigorous testing, inadequate documentation, and a lack of

considerations for portability.

Model Replication and Reengineering

Replicating and reengineering DNNs is tricky, even when referring to the original
code of the research prototypes

Our group has previously reported on three challenges of DNN replication and
reengineering: model operationalization, portability of DL operations, and

performance debugging.

Conceptual Reuse Challenges

19

Adaptation Reuse

20

Leverage existing DNN models and adapt them to
solve different learning tasks.

Technical Adaptation

Accuracy and latency issues. Lack of push-button solutions for adapting DNNs
across diverse hardware environments (heterogeneous compute is a thing)

Fairness and robustness is an ongoing challenge. Techniques such as local
interpretability and model-agnostic methods can help

More modular designs (similar to traditional software) can help.

Decision Making

Registries often lack infrastructure and attributes helpful to the reuse process:
provenance, reproducibility, and portability.

Traditional software info, e.g. popularity, quality, and maintenance, are often
emphasized instead (not sufficient).

Security and privacy attacks (studied by our group) are a concern: train-time
attacks, idle-time attacks, inference-time attacks, and traditional software supply

chain attacks.

Adaptation Reuse Challenges

21

Deployment Reuse

22

Convert and deploy pre-trained DNN models in
different computational environments and

frameworks.

Interoperability

Specialized compute platforms and novel architectures present a great challenge
for deployment.

Deep learning compilers can help; however, not all frameworks and their
operators are supported on different hardware.

We’re looking at model conversion failures in emerging work within our group
by doing failure studies. Operator conversion is a common cause of failure.

Establishing Trust in Supply Chains

Similar to traditional software supply chains (e.g. Node), establishing trust is a
major challenge. Anyone can release anything (for the most part).

Users are often unwilling or unable to check for various possible attacks.

Traditional software methods such as Software Bills of Materials (SBOMs) and
reproducible builds are more difficult for DNNs, owing to non-determinism and

training costs.

Deployment Reuse Challenges

23

Future Research Directions

Evaluate artifacts at conferences/journals to look beyond basic
reproducibility by including software engineering aspects from

traditional software. Consider a “checklist” approach similar to Journal of
Open Source Software.

Testing tools are emerging for DNNs but need greater adoption. Make use
of checklists to aid in assessing conceptual reuse potential.

Make use proper testing tools across the board: e.g., validation tools,
unit testing, and fuzz testing (for security aspects).

Future Directions: Conceptual Reuse

25

Prior work found that the trustworthiness of DNNs are concerning due to the
lack of DNN transparency. Future work can measure attributes of DNNs by

extracting from provided documentation, source code, and metadata

Engineers struggle to compare different DNNs and identify a good way to adapt
to their downstream task. To facilitate the adaptation, researchers can identify

different approaches to support the model selection process. e.g., providing
enhanced documentation, similar to the badges used by GitHub.

Open-source PTMs remain underutilized, suggesting the need for a robust PTM
recommendation system aid engineers in adaptation reuse.

Specific attack detection tools are currently missing in DL model registries.
Adding such tools would help to improve trust of registries.

Future Directions: Adaptation Reuse

26

Model converters (e.g. ONNX) often produce models that are
semantically not equivalent to the original models, pointing to a need for
more rigor in the intermediate representation or stronger type checking.

Model converters suffer from incompatibilities with the evolution of
intermediate representation, better focused by understanding operator
popularity, and domain-specific languages can be used to automatically

(and safely) generate converter code.

Build on existing software Supply Chain Security tech for DNNs: The
software engineering community has been working on systems such as

TUF and Sigstore to increase the usability and effectiveness of signatures
for package managers.

Future Directions: Deployment Reuse

27

There is a lack of tools that quantify what is and is not an effective SE
process for DNNs. SE process must look beyond the code-based

versioning model.

Mining repositories is a major challenge. Beyond source code: training
dataset (sometimes prohibitively large), configuration, and

documentation are all crucial to understanding PTMs.

We’ve created a PTMTorrent data set to aid in mining HuggingFace and
other hubs for MSR 2023 with a new/richer version planned for 2024.

Future Directions: Assessing SE Process of DNNs

28

Davis, James C.; Jajal, Purvish; Jiang, Wenxin; Schorlemmer, Taylor R; Synovic,
Nicholas; Thiruvathukal, George K., Reusing Deep Learning Models: Challenges and
Directions in Software Engineering. IEEE JVA Symposium on Modern Computing at
IEEE Services 2023, doi.org/10.6084/m9.figshare.23317556 [this paper]

Jiang, Wenxin; Synovic, Nicholas; Hyatt, Matthew; Schorlemmer, Taylor R.; Sethi,
Rohan; Lu, Yung-Hsiang; et al. (2023): An Empirical Study of Pre-Trained Model Reuse
in the Hugging Face Deep Learning Model Registry. In Proceedings of International
Conference on Software Engineering, 2023. doi.org/10.6084/m9.figshare.22056872

Wenxin Jiang, Nicholas Synovic, Rohan Sethi, Aryan Indarapu, Matt Hyatt, Taylor R.
Schorlemmer, George K. Thiruvathukal, and James C. Davis. 2022. An Empirical Study
of Artifacts and Security Risks in the Pre-trained Model Supply Chain. In Proceedings
of the 2022 ACM Workshop on Software Supply Chain Offensive Research and
Ecosystem Defenses (SCORED'22). Association for Computing Machinery, New York,
NY, USA, 105–114. doi.org/10.1145/3560835.3564547

Jiang, Wenxin; Synovic, Nicholas; Jajal, Purvish; Schorlemmer, Taylor R.; Tewari, Arav;
Pareek, Bhavesh; et al. (2023): PTMTorrent: A Dataset for Mining Open-source
Pre-trained Model Packages. figshare. Dataset.
https://doi.org/10.6084/m9.figshare.22009880

Papers from Our Group

29

https://doi.org/10.6084/m9.figshare.23317556.v1
https://doi.org/10.6084/m9.figshare.22056872.v1
https://doi.org/10.1145/3560835.3564547
https://doi.org/10.6084/m9.figshare.22009880.v3

