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Software Engineering Refresher



“Software Engineering is (1) the application of a systematic, disciplined, 
quantifiable approach to the development, operation, and maintenance 

of software; that is, the application of engineering to software

and (2) the study of approaches as in (1)”

IEEE Standards Collection: Software Engineering, IEEE Standard 
610.12-1990 and Pressman, Software Engineering, 7th Ed.

This forward-looking definition of SE from 1993 (IEEE!) speaks to the 
importance not only of software methodology but also the study of how 

software comes to be.

Machine learning software is still software by any other name and is 
therefore worthy of further study and community attention.

Retrospective: What is Software Engineering?
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Two Primary Kinds of SE Research
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Solutions

Open problems

Observations





Machine Learning and Pre-Trained 
Models



What is a Neural Network?
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https://srnghn.medium.com/deep-learning-overview-of-neurons-and-activation
-functions-1d98286cf1e4 

https://srnghn.medium.com/deep-learning-overview-of-neurons-and-activation-functions-1d98286cf1e4
https://srnghn.medium.com/deep-learning-overview-of-neurons-and-activation-functions-1d98286cf1e4


Huge models, huge training costs (and growing)

Patterson et al., 2021 "Carbon emissions and large neural network training." arXiv preprint arXiv:2104.10350 (2021).
Gholami et al. 2021: https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
Strubell et al. 2019: https://arxiv.org/pdf/1906.02243.pdf 

Carbon footprint 
costs measured 
using BERT in 2019

60M parameters 110M parameters 175B parameters

GPT-4 ~170T parameters

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
https://arxiv.org/pdf/1906.02243.pdf


Pre-trained neural networks
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PTNN: A neural network that is already parameterized for an application

Example use: Transfer learning



PTMs vs. Traditional Software Package Reuse
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HuggingFace

npm

PyPi



• A model hub is a hosted platform of pre-trained models (PTMs) 
and datasets organized by problem domain.

Model Hubs

What is a model hub?

10,000,000+
1
2



Reuse Challenges



Deep neural network reuse is the process of using existing DNN technology for another purpose.

We focus on three distinct types: conceptual reuse, where existing theory is repurposed; 
adaptation reuse, where existing DNN models are modified; and deployment reuse where 

existing DNN models are converted for use in a new environment.

   Dashed boxes provide examples of each type.

Three Types of Reuse
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Conceptual Reuse

Replicate and reengineer the algorithms, model architectures, or other 
concepts described in academic literature and similar sources, integrating the 

replication into new projects. 

Adaptation Reuse

Leverage existing DNN models and adapt them to solve different learning 
tasks. 

Deployment Reuse

Convert and deploy pre-trained DNN models in different computational 
environments and frameworks.

Reuse in Deep Learning (DNNs)
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Model Structure
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Components of a deep neural network (DNN), represented at 
different levels of abstraction. A DNN is a composition of 

weighted operations. These are combined into a layer; a group of 
layers into a block; and a group of blocks into a sub-graph such as 

a backbone or a head.



Conceptual Reuse
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Replicate and reengineer the 
algorithms, model 

architectures, or other concepts 
described in academic literature 
and similar sources, integrating 

the replication into new 
projects. 



Data Pipelines
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Well established pattern from 
industry.

    Illustration of a data pipeline 
following the Extract-Transform-Load 

design pattern.

    The specific pipeline is for the 
You-Only-Look-Once (YOLO) model 

family (computer vision)



Reproducibility of Results

Reproducibility is considered a key quality of machine learning software, yet 
achieving DNN reproducibility remains a challenging task and continues to be a 

focal point within the research community.

Many SOTA models are prototype stage. This stage is typically characterized by an 
absence of rigorous testing, inadequate documentation, and a lack of 

considerations for portability.

Model Replication and Reengineering

Replicating and reengineering DNNs is tricky, even when referring to the original 
code of the research prototypes

Our group has previously reported on three challenges of DNN replication and 
reengineering: model operationalization, portability of DL operations, and 

performance debugging.

Conceptual Reuse Challenges
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Adaptation Reuse
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Leverage existing DNN models and adapt them to 
solve different learning tasks.



Technical Adaptation

Accuracy and latency issues. Lack of push-button solutions for adapting DNNs 
across diverse hardware environments (heterogeneous compute is a thing)

Fairness and robustness is an ongoing challenge. Techniques such as local 
interpretability and model-agnostic methods can help

More modular designs (similar to traditional software) can help.

Decision Making

Registries often lack infrastructure and attributes helpful to the reuse process: 
provenance, reproducibility, and portability.

Traditional software info, e.g. popularity, quality, and maintenance, are often 
emphasized instead (not sufficient).

Security and privacy attacks (studied by our group) are a concern: train-time 
attacks, idle-time attacks, inference-time attacks, and traditional software supply 

chain attacks.

Adaptation Reuse Challenges
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Deployment Reuse
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Convert and deploy pre-trained DNN models in 
different computational environments and 

frameworks.



Interoperability

Specialized compute platforms and novel architectures present a great challenge 
for deployment. 

Deep learning compilers can help; however, not all frameworks and their 
operators are supported on different hardware.

We’re looking at model conversion failures in emerging work within our group 
by doing failure studies. Operator conversion is a common cause of failure.

Establishing Trust in Supply Chains

Similar to traditional software supply chains (e.g. Node), establishing trust is a 
major challenge. Anyone can release anything (for the most part).

Users are often unwilling or unable to check for various possible attacks.

Traditional software methods such as Software Bills of Materials (SBOMs) and 
reproducible builds are more difficult for DNNs, owing to non-determinism and 

training costs.

Deployment Reuse Challenges
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Future Research Directions



Evaluate artifacts at conferences/journals to look beyond basic 
reproducibility by including software engineering aspects from 

traditional software. Consider a “checklist” approach similar to Journal of 
Open Source Software.

Testing tools are emerging for DNNs but need greater adoption. Make use 
of checklists to aid in assessing conceptual reuse potential.

Make use proper testing tools across the board: e.g., validation tools, 
unit testing, and fuzz testing (for security aspects).

Future Directions: Conceptual Reuse
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Prior work found that the trustworthiness of DNNs are concerning due to the 
lack of DNN transparency. Future work can measure attributes of DNNs by 

extracting from provided documentation, source code, and metadata

Engineers struggle to compare different DNNs and identify a good way to adapt 
to their downstream task. To facilitate the adaptation, researchers can identify 

different approaches to support the model selection process. e.g., providing 
enhanced documentation, similar to the badges used by GitHub.

Open-source PTMs remain underutilized, suggesting the need for a robust PTM 
recommendation system aid engineers in adaptation reuse.

Specific attack detection tools are currently missing in DL model registries. 
Adding such tools would help to improve trust of registries.

Future Directions: Adaptation Reuse
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Model converters (e.g. ONNX) often produce models that are 
semantically not equivalent to the original models, pointing to a need for 
more rigor in the intermediate representation or stronger type checking.

Model converters suffer from incompatibilities with the evolution of 
intermediate representation, better focused by understanding operator 
popularity, and domain-specific languages can be used to automatically 

(and safely) generate converter code.

Build on existing software Supply Chain Security tech for DNNs: The 
software engineering community has been working on systems such as 

TUF and Sigstore to increase the usability and effectiveness of signatures 
for package managers. 

Future Directions: Deployment Reuse

27



There is a lack of tools that quantify what is and is not an effective SE 
process for DNNs. SE process must look beyond the code-based 

versioning model.

Mining repositories is a major challenge. Beyond source code: training 
dataset (sometimes prohibitively large), configuration, and 

documentation are all crucial to understanding PTMs.

We’ve created a PTMTorrent data set to aid in mining HuggingFace and 
other hubs for MSR 2023 with a new/richer version planned for 2024.

Future Directions: Assessing SE Process of DNNs
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