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Abstract

Machine learning techniques are becoming a fundamental tool for scientific and
engineering progress. These techniques are applied in contexts as diverse as astron-
omy and spam filtering. However, correctly applying these techniques requires care-
ful engineering. Much attention has been paid to the technical potential; relatively
little attention has been paid to the software engineering process required to bring
research-based machine learning techniques into practical utility. Technology com-
panies have supported the engineering community through machine learning frame-
works such as TensorFlow and PyTorch, but the details of how to engineer complex
machine learning models in these frameworks have remained hidden.

To promote best practices within the engineering community, academic institu-
tions and Google have partnered to launch a Special Interest Group on Machine
Learning Models (SIGMODELS) whose goal is to develop exemplary implementations
of prominent machine learning models in community locations such as the Tensor-
Flow Model Garden (TFMG). The purpose of this report is to define a process for
reproducing a state-of-the-art machine learning model at a level of quality suitable
for inclusion in the TFMG. We define the engineering process and elaborate on each
step, from paper analysis to model release. We report on our experiences implement-
ing the YOLO model family with a team of 26 student researchers, share the tools we
developed, and describe the lessons we learned along the way.

1 Introduction

Successfully reproducing a machine learning (ML) model, i.e., implementing and contex-
tualizing it, is a major problem facing the machine learning community. This process
is followed in both the scientific and engineering communities, to compare against prior
work and to transition research results into practice. ML architectures are prototyped by
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Figure 1: Our Model Engineering Process for the YOLO model family. Each phase of the
project is described in detail and examples are taken from the YOLO exemplar.

researchers, but to bring the model to practice we need to increase the level of standard-
ization of ML software. Although an ML architecture may have several implementations,
the lack of standardization makes it challenging to find, test, customize, and evaluate
an existing implementation [1), [2]. These tasks require an engineer to combine libraries,
reformat data sets, and debug third-party code. This process is time consuming, error
prone, and not resilient to component evolution. An exemplary implementation of an ML
model in a common framework, such as TensorFlow or PyTorch, makes this model more
accessible to someone who seeks to extend or apply it.

The proposed solution is to provide a collection of Exemplars. Each exemplar is a
reference implementation of an ML model that can be used and extended. A collection of
exemplars, implemented using the same framework and conventions, will be an engine to
advance scientific and engineering progress. Such a collection would allow faster testing
and customization of ML models, and would simplify development of new models from
trustworthy components. This concept is similar to the “standard library” in languages
like C++ [3] and Java [4]. This task is too great for any one organization to complete, so
it will require community contributions, similar to community package registries such
as npm [5], Maven [6], and DockerHub [7].

In order to grow a collection of exemplars for the TensorFlow framework, dubbed the
TensorFlow Model Garden, a Special Interest Group (SIG) has been established H with
the objective of identifying and implementing state-of-the-art ML models in a consistent
format [8]. As a proof of concept, our pilot team at Purdue University is finalizing an
exemplary implementation of several models from the YOLO family [9, 10, 11}, [12]. This
will soon be added to the Model Garden.

In this document, our goal is to describe the ML reproducibility process involved in
engineering an exemplary implementation. We seek to lead by example and inform SIG
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members and the broader ML community about the process and effective engineering
practices. Figure |1/ depicts the reproducibility process that our team proposed and fol-
lowed throughout the project.

Our contributions are:

1. We detail our process and criteria for selecting a TFMG paper (§4).
2. We describe our engineering process, coupled with TensorFlow code examples (§6).

3. We walk through the steps required to contribute to the TensorFlow Model Garden
(§7] and §8).

4. We explain effective engineering practices to facilitate this process (§9).

Outline of Report We begin with background material on engineering reproducible
machine learning systems in §2| Then we describe the engineering process in detail,
along with code examples and instances from YOLO in §3}§8, We close by discussing
engineering practices that will help novices establish engineering teams in the future in

§91

2 Background and Related Work

There are currently not many best practices defined with respect to reproducing an
machine learning model. This makes reproducibility a significant problem within the
machine learning community. Though some platforms offer pre-trained machine learn-
ing models, there is still a lack of knowledge in the fields of best engineering practices
and reproducibility in this domain.

2.1 Best Practices

Deep learning is an emerging field whose probabilistic nature and underlying paradigm
differs from traditional software [13]. The engineering community has begun to adopt
deep learning, but lacks long-term experience in appropriate engineering methods [14].
Previous works have begun to enumerate the challenges and directions of best practice
for deep learning systems and applications.

Major technology companies have shared different kinds of studies on machine learn-
ing best practice, e.g., Google [15], Microsoft [16], and SAP [17]. Google [15] and Mi-
crosoft [16] provide high-level guidelines on the machine learning engineering process.
Breck et al. from Google present a rubric with 28 tests and monitoring practices to im-
prove ML production readiness and reduce technical debt [15]. Rahman et al. present
a case study of machine learning engineering at SAP [17]. They discuss the challenges
in software engineering, machine learning, and industry-academia collaboration and
specifically point out the demand for a consolidated set of guidelines and recommenda-
tions for ML applications. Unlike the guidance on high-level architectures and organiza-
tional processes shared by Google and Microsoft, we focus on lower-level engineering and
programming patterns, and specifically focus on reproducing an existing model rather
than building a new one. New models will continue to be identified. Our interest is
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in transitioning research results into practice by realizing known models in exemplary
implementations.

Beyond industry leaders describing their practices, software engineering researchers
have studied ML engineering practices in open-source software and in a wider range
of firms [18, [19) 20, 21]. Zhang et al. report on the engineering life cycle of deep
learning applications [19]. They indicate that validating deep learning software is an
open problem. Based on their findings, they give suggestions to both practitioners and
researchers, such as using well-known frameworks, improving the robustness of deep
learning applications, and adopting new fault localization tools. Serban et al. conduct
a survey, quantify best practice adoption, and indicate a positive correlation between
best practices and software quality [20]. These works demonstrate critical needs for
the proper management of different kinds of components in the engineering process
and a significant role of testing and debugging tools and strategies. To deal with these
demands, we provide a guideline on how to manage components in the machine learning
model engineering process, as well as a description of how to test and debug these
models.

Our work thus fills a gap in both industry and academic knowledge. We provide a
novel perspective on ML best practices: an experience report by an engineering team
itself, identifying a detailed engineering process and lessons learned. Our specific focus
is on “deep learning” software (i.e., a non-trivial neural network-based model), but some
of our findings will generalize to other forms of ML.

2.2 Reproducibility

The reproducibility of machine learning research is of growing importance, due both to
the increasing number of sensitive applications, and the number of distinct machine
learning frameworks in which to implement models. The rapid increase of data, algo-
rithms, and computation has resulted in the quick development of the machine learn-
ing process. As a result, the machine learning community is paying more attention
to the reproducibility of machine learning research papers in recent years [22] [23].
Previous works have indicated the need for detailed guidance for engineers and re-
searchers [2] (1], [24].

The significance of reproducibility is emphasized in the machine learning domain
among researchers and practitioners. Pineau pointed out three needed characteristics
for machine learning software: reproducibility, reusability, and robustness [25]. She
demonstrates that machine learning algorithms are usually unstable and difficult to
reproduce in which case they proposes a need for proper documentation of the neces-
sary information. Pham et al. study model performance variance across deep learning
systems|[26]. To combat this variance, they suggest careful consideration of training
variance as well as the transparency of their research works, which can thus improve
reproducibility of the works. Our work supports their suggestions. Moreover, we aim to
provide detailed guidance for complicated works on reproducing existing models/algo-
rithms or re-implementing the results of a published paper.

Machine learning research conferences have been trying to ensure that published
results are reliable and reproducible for the last few years. In 2019, the Neural In-
formation Processing Systems (NeurIPS) conference added a mandatory reproducibility
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checklist to their code submission policy, to promote the importance of reproducibil-
ity in future research [22, [23]. Researchers are encouraged to re-implement parts of a
paper and produce a reproducibility report which is similar to our work. However, the
process and expert knowledge are implicit in the NeurIPS context which means they are
not helpful enough for engineering practitioners. The process we have outlined not only
provides what we did but also indicates what and how should we do in the future. We
are communicating this expert knowledge to both academic and engineering domains.

Our work provides detailed guidance for engineers who would like to reproduce aca-
demic research on deep learning architectures for use in practice. We make implicit
academic knowledge explicit, and illustrate engineering processes.

2.3 Towards Exemplary Deep Learning

There are several preliminary attempts at developing exemplar collections in the machine
learning community including TensorFlow Model Garden, e.g., TensorFlow Hub [27],
Torchvision [28], and some models advertised via Kaggle [29]. TensorFlow Hub consists
of different pre-trained models and datasets from across the TensorFlow ecosystem [27].
Torchvision, integrated in Pytorch, collects popular datasets, models, and common im-
age transformations for computer vision [28]. Kaggle is a platform for users to upload
their own trained models which are able to be downloaded and reimplemented by others.
Similar to these efforts, TensorFlow Model Garden is a repository of machine learning
models and datasets built with TensorFlow’s high-level APIs [30].

A detailed guideline for engineering process of machine learning models is valuable to
both engineers and researchers. In contrast, existing documentation is high-level. For
example, the Pytorch Contribution Guide [31] indicates what engineers should consider
in the engineering process of an open source project. This guide is approximately two
pages long. In contrast, our work provides a more detailed guideline from paper selection
to model engineering, as well as testing and releasing in TensorFlow Model Garden,
which are not treated in the Pytorch document. Although some of our technical advice is
specific to TensorFlow, our engineering process and tools will generalize to other machine
learning frameworks.

2.4 Exemplars: Research Prototypes Are Necessary, But Not Sufficient

Research papers describing machine learning algorithms may lack the details required
for complete model reimplementation [22, 23]. Hence, access to an actual implementa-
tion (e.g., the research prototype, also known as the primary implementation), can prove
beneficial for reference. For example, Papers with Code [32] is a database of ML models
with existing primary and secondary implementations using various libraries, including
accuracy values and other associated metrics.

Although existing implementations are helpful, an exemplary implementation is
distinguished by its documentation, level of testing, and modular design to promote
re-use and adaptation. An exemplar is engineered, not programmed.



3 Overview

The main objective of this document is to provide scientists and engineers members
with an outline of the machine learning reproducibility process, shown in Figure [I]
Throughout the document, engineering best practices are highlighted, which are based
on our model engineering experience. The process is divided into 5 main stages:

1. Academic Paper Analysis (§4): We select a research paper for reimplementation
and analyze it for key details.

2. Understanding the Garden Interface (§5): To promote standardization, our ex-
emplar implementation is constrained to follow the conventions of the TensorFlow
Model Garden.

3. Model Engineering (§6): We implement the model using TensorFlow, drawing on
both the research paper and its original implementation.

4. Pre-Release (§7): We describe our internal review process, including testing, doc-
umentation, and evaluation to verify that the implementation is exemplary.

5. Final Release (§8): Our exemplar is reviewed by the Model Garden community.
After all code is finalized, the model and trained weights are published.

4 Academic Paper Analysis

As illustrated in Figure |1} the first step in the ML reproducibility process is to select and
comprehend the desired ML model. This section summarizes the relevant information to
extract, such as the model structure and key components. The information is presented
in a checklist at the end of this section.

4.1 Paper Selection

SIGMODELS has a prioritized list of models that can be reimplemented and published
in the Model Gardenﬂ The repository is also open to accepting exemplars from new
research papers and they satisfy the criteria mentioned in the Research Paper Code
Contribution guidelines.li‘-]

4.1.1 Measuring Paper Difficulty

Estimating paper difficulty will help your engineering team decide which paper to choose
based on machine learning expertise within the group. The primary metrics we use to
estimate the difficulty of reproducing a paper’s model in TensorFlow are:

* Architecture Size: Smaller, simpler architectures are easier to implement. Size
can be estimated using the lines of code and number of layers.

3As of 28 June 2021, this list is maintained on the TensorFlow GitHub repository, at https://github.
com/tensorflow/models/issues/8709 and via the label “help wanted:paper implementation”.
*See https://github.com/tensorflow/models/wiki/Research-paper—-code-contribution.
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* Custom operations: TensorFlow includes some built-in operations. Custom oper-
ations must be implemented from scratch. This cost can be estimated by checking
the operations used in the model, and comparing to the set available in TensorFlow.
More details are in §9.1]

* Existing implementations: A primary or secondary implementation can clarify de-
tails not provided in the research paper. Unofficial implementations provide more
opportunities for comparison and inspiration, particularly if the primary imple-
mentation does not use the desired machine learning framework (e.g., TensorFlow).
This can be measured in terms of number of official and unofficial implementations
in existence, e.g., with reference to a resource like Papers With Code [32].

A difficult machine learning paper will have a large architecture, more custom oper-
ations, and few existing implementations.

4.1.2 Selection Advice

It is recommended to select a project based on prior experience and expertise. If there is
no existing knowledge related to the project, time-consuming preliminary research will
be required. If the engineering team is new, it is advised to select one research paper, and
add more as time progresses based on team size. Model difficulty can be measured using
the metrics provided in and should be adjusted based on the team’s expertise in
the field of machine learning. If the team has a specialization, then the purpose or type
of the model will also affect the paper selection process. For example, our team focuses
on computer vision and image processing and thus, the projects we select will be related
to the TensorFlow Vision API.

4.1.3 TensorFlow Restrictions

Before finalizing your paper choice, analyze the feasibility of the project by checking
whether the operations in this paper can be replicated in TensorFlow using existing or
custom operations. Not all operations are possible in TensorFlow. Study the paper and
existing implementation(s) to determine whether all functionality can be implemented.

For example, our team rejected the Momentum Contrast for Unsupervised Visual Rep-
resentation Learning (MOCO) project because the functionality of a shuffle batch norm
was not possible in TensorFlow at the time. When you identify such a limitation in Ten-
sorFlow, is good practice to create an issue on the official TensorFlow GitHub repository
describing the missing operation or functionality. We did so, and the TensorFlow team
introduced support for a shuffle batch norm in TensorFlow v2.4.

4.2 Paper Analysis Checklist

To successfully engineer an exemplary implementation of the model you selected, you
will need to understand its architecture and context. Here we present our paper anal-
ysis checklist, to help you extract information from the authors’ description of their



model. The checklist provides insight regarding the potential difficulties and consider-
ations during model reimplementation. Since machine learning models vary, you may
need to tailor it to the model you are re-implementing.

To illustrate the use of this checklist, we applied it to the YOLO v3 paper [11]. This
helped us identify several potential difficulties and considerations during our YOLO
replication.

For example:

* Framework: The primary implementation uses a different framework, which will
need to be addressed as mentioned in

* Custom Layers: Some of the layers required for YOLO do not exist within the
TensorFlow API. These custom layers must be implemented, following conventions
so that other exemplars can use them.

The checklist follows. The result of applying the checklist to the YOLO v3 paper is
indicated at the end of each checklist item, denoted with YOLO example.

s a

General Checks

Model Purpose The model development approach depends on the type of model
being implemented and its primary function. Deep Learning code performs
a variety of tasks. Typical examples are object detection (OD) and natural
language processing (NLP). YOLO example: Detect Objects, Classify Objects.

Code Availability The existence of an official or accurate unofficial implementa-
tion can serve as a reference during the model engineering process. YOLO
example: Original Darknet Repository.

Language/Framework/Libraries Used A model implementation will vary based
on the programming language and the machine learning library used. Some
operations will directly correspond to language or framework functions, while
others will require custom operations. YOLO example: Darknet C Library.

Networks Referenced If another neural network is referenced, you may need to
refer to it while reconstructing your exemplar. YOLO example: ResNet, YOLO
v2, Faster RCNN, RetinalNet.




Model and Design Checks

Model Architecture The model cannot be built without knowing its architecture,
i.e the type, size and connection of layers. YOLO example: Architecture pro-
vided.

Model Sub-Networks Sub-networks are sub-structures, such as a backbone or
decoder, that can be built independently because they serve a discrete pur-
pose. These elements can be built in parallel during the model engineering
process. YOLO example: Backbone, Classification Head.

Model Building Blocks Building blocks are a set of layers or components that are
repeatedly seen in a particular order within the model architecture. Having
well-defined building blocks will ensure components is being reused when-
ever possible, with no redundant code segments. YOLO example: DarkResNet
Block, Routing Layers, DetectionRouteProcessing, DarkBlock.

Custom Layers TensorFlow has predefined layers, but most Machine Learning
models will require custom layers that perform a specific function. Once
a custom layer is built, it can be used anywhere within the Model Garden.
YOLO example: DarkConv.

Loss Functions The loss function is used to train an machine learning model. The
model parameters are tuned until the loss function takes on small-enough
values. YOLO example: Loss equation is provided.

Output Structure Knowing the final output structure will help during the unit
and differential testing phases of model development. YOLO example: Archi-
tecture is provided.




Training and Evaluation Checks

Dataset Used Without using the same dataset as the research paper, it is not
possible to reproduce the results obtained in the original implementation.
Most modern models are evaluated on well-known datasets. YOLO example:
COCO dataset.

Pre-Processing Functions Pre-processing functions are used to format and aug-
ment the dataset before feeding input to the model. YOLO example: Random
jitter, random crop, random zoom.

Output Processing Functions Once the model has processed the input, the out-
put may be adjusted. YOLO example: No post-processing.

Testing and Target Metrics Testing Metrics are metrics used to evaluate a ma-
chine learning model. Some metrics are built into TensorFlow. Others must
be custom-made. Target Metrics are the metric values obtained in the original
implementation, and will be provided in the research paper. The closer the
exemplar’s performance metrics are to the original one, the more precise the
exemplar is. YOLO example: Several measures of average precision — APsg
APy, APs, APy, APy

Training Steps A model may have special steps to follow during the training pro-
cess. YOLO example: The input format and training steps are provided.

5 Interfacing with the Exemplar Conventions

This following section discusses the organization and interfacing requirements for Ten-
sorFlow Model Garden exemplars. All exemplars in the Model Garden follow the organi-
zational structure depicted in Table [I]

5.1 The Task Structure

In order to unify and automate model testing, the TensorFlow Model Garden has a cus-
tom training library, orbit. This creates a unified structure that any contributor could
implement quickly to test a model, while also preserving the functionality and auton-
omy of the Garden Trainer. The basic unit of a TensorFlow Model Garden is called the
Task, which can be found in the official.core.base_task file. This class serves as an
interface allowing you to use the train.py file to automatically train any model using
the command line.

The Task contains the general interface for a model in the TensorFlow Model Garden.
It is responsible for building and unifying the main components (model, loss function,
and data pipeline) and applying the appropriate evaluation metric(s). It also should con-
tain the train_step and validation_step methods required to train and validate model
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Table 1: The organizational structure of TensorFlow Model Garden exemplars, grouped
by whether each directory is (a) Core; (b) Supporting; or (c) Optional.

Folder Required Description

dataloaders Yes Decoders and parsers for your data pipeline.

modeling Yes Model and the building blocks.

losses Yes Loss function.

common Yes Registry imports. The tasks and configs need to be regis-
tered before execution.

configs Yes The config files for the task class to train and evaluate the
model.

ops Yes Operations: utility functions used by the data pipeline, loss

function and modeling.

tasks Yes Tasks for running the model. Tasks are essentially the
main driver for training and evaluating the model.

utils No Utility functions for external resources, e.g., download-
ing weights from the primary implementation’s repository,
datasets from external sources, and the test cases for these
functions.

demos No Files needed to create a Jupyter Notebook/Google Colab
demo of the model.

performance. These should be tailored to fit the needs of a specific implementation.
Further details regarding component integration are discussed in

5.2 Configuration

In order to configure a task, each implementation will require the addition of a set of dat-
aclass configurations that inherit from those found in offical.core.config definitions.
In addition to the configuration files, you should include a method named experiment
that predefines all the configuration parameters and serves as a default model state if a
given parameter is not in the operating configuration file. This will allow configuration
files to remain concise while also preserving the model’s essential functionality. The
configurations and the Tasks are designed to come together into an operational model
that can be manually configured via the input of a model configuration, or automatically
configured using the trainer and a configuration file. Given that the model operates
using this dual functionality, the task will not have any class parameters other than
self.task_config used to hold the input configuration dataclasses.
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6 Engineering An Exemplar

As seen in Figure|1|and Table (1] all deep learning models, regardless of their type or pur-
pose, can be broken down into three main components: the Data Pipeline (dataloaders),
Loss Function (losses) and the Model itself (modeling). These components can and
should be developed and tested independently.

6.1 The Extract-Transform-Load Data Pipeline

Figure [2|depicts the common structure of the Data Pipeline, as instantiated in our YOLO
exemplar. The Data Pipeline extracts raw data such as pictures from a storage source
(decoder), transforms the data into the required input format (parser), and loads the
transformed data into the GPU (loader). Its speed matters: the Data Pipeline can be a
bottleneck for training and inference.

In the TensorFlow Model Garden, the Extract-Transform-Load (ETL) architecture [33]
is the preferred approach for the Data PipelineE] This modular design promotes reuse
in different TensorFlow Model Garden exemplars. Different models may share datasets
(Extract), augmentations (Transform), or final stages (Load).

Each exemplar’s decoder and parser should be inherited from the decoder and parser
classes of the TensorFlow Model Garden /] The loader serves as an interface between the
data pipeline and the model, and will vary based on architecture.

6.1.1 ETL - Extract

The extraction component, called the decoder, converts the raw dataset to a format that
is compatible the rest of the Data Pipeline. It is imperative before developing the decoder
to determine the raw data format structure. After this, the data should serialized into a
format that will be compatible with the data handling functions.

TensorFlow’s data handling functions are found in tensorflow.data. This API inter-
faces with and is optimized for TensorFlow’s own file format, known as TFrRecord, which
is a serialized sequence of binary records. The tensorflow.train APl and tensorflow.io
API convert raw inputs to TFrRecord, which can later be loaded in as a tensorflow.dataset
object. After converting and standardizing the raw input into a TFRecord, it is ready to
be passed onto the transformation component.

Note that there should be one decoder class for a specific dataset and this should be
inherited from the Model Garden’s decoder class. This promotes two kinds of standard-
ization: among decoders within the project, and among inputs going into the transfor-
mation component of the data pipeline.

5See: https://github.com/tensorflow/docs/blob/master/site/en/rl/guide/performance/
datasets.md.

°As of 28 June 2021, these classes are defined in https://github.com/tensorflow/models/tree/
master/official/vision/beta/dataloaders.
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Figure 2: Components of a general Data Pipeline, along with the ETL architecture. This
pipeline is specific to YOLO.

6.1.2 ETL - Transform

The transformation component is called the parser. It handles preprocessing, normaliza-
tion, and formatting of the input features and labels within the dataset to fit the model
input format. The parser should be a class that contains two data handling methods,
one for training and another for evaluation. There should also be another method that
returns one of these methods based on the activity being done. The returned method
should contain all of the necessary data handling functions to prevent incompatible li-
brary dependencies and optimize performance.

The function returned by the parser can be mapped onto the dataset, but only modi-
fies the features and labels that are loaded from a persistent storage source into system
memory and not the dataset itself. This will allow the model to begin training faster as
only the first batch will be required to be processed and using prefetching, data can then
be processed on the CPU while the model trains on the GPU, which will reduces both
processing units’ idle time. Another way to optimize the efficiency of the transformation
component is by parallelizing the mapped functions which reduces the amount of time it
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will take the CPU to execute the mapped function over the batch. Note that there should
be a parser depending on the type of training and phases of that training. Similar to
the decoder, there should be one parser class for a specific dataset and this should be
abstracted from the Model Garden’s decoder class.

6.1.3 ETL - Load

The loading component is responsible for loading the dataset into the model for train-
ing. This component also applies dataset augmentations such as batching, prefetching,
caching, shuffling, and interleaving. The dataset augmentations are primarily deter-
mined by the size of the dataset such as how the dataset interacts with system memory.
The loading component is located in the Task structure in the method build inputs (),
This method instantiates the decoder and parser, and the entire loading component,
input_reader.

If a dataset fits in the available system memory then it can be cached. Otherwise, the
dataset must be processed in batches. If the dataset is larger than system memory but
caching is attempted, the process or the machine may crash. Shuffling and interleaving
should be done with the understanding that the larger the dataset, the longer the time
it takes to start training for each epoch.

6.2 Model

Generally speaking, a model is an ordering of operations parameterized by weights that
control its behavior. This structure uses input data to accomplish a goal, e.g., YOLO’s
goal is object detection. To structure the model, operations and weights are grouped
into layers, which are themselves combined into blocks. The relationship between these
model elements is shown in Figure [3|and explained in Appendix[Al Each layer and block
can be designed and tested individually, and then integrated into the full model structure
prior to training.

Block Model/Architecture

InputLayer
» F

7

Backbone

Operation
X N I B \ 2R EEEE) IR R B
‘ Laver ’ ‘ Laver ’ [ Bock | | Block |
v v v
8P | weights | Blgck | | BI:ck | | Blovck |
w [ Bock | | Block || Block |
L

Decoder

Figure 3: Relationship between model components, from simple operations to the full
architecture.

14



The architecture of a machine learning model varies based on its purpose. For com-
puter vision, models have three main components: backbone, decoder, and head. The
backbone is the combination of layers responsible for feature extraction. The backbone
is usually a large number of sequential layers and the majority of the model training
process is to adjust the backbone parameters. A model decoder, not to be confused with
the data pipeline decoder, reasons using the features extracted by the backbone. It usu-
ally has fewer layers than the backbone. Lastly, the head, often the smallest element, is
responsible for the final model task (e.g., image classification).

Many models re-use other models as modules, e.g., combining one model for fea-
ture extraction with another model for inference from those features. One of the values
of a collection of exemplars is that it enables this type of model re-use. Thus, while
constructing the model, ensure that the structure mentioned in Figure [3|is followed.

Throughout the model development process, continually refer to the model architec-
ture provided within the research paper. Usually, the authors will describe architecture
in detail, including the number of layers, size of each layer, how each layer is connected
to other layers, and fine-grained optimizations such as parameter adjustment. Identi-
fying repeating layers and layer connections within the architecture can help create a
“building block” to reduce the lines of code of the model itself Many model architectures
will require at least one custom layer that does not exist in the TensorFlow API.

6.3 Loss Function

The final model-specific component is the Loss Function. The loss function is a function
that measures the extent to which the model’s performance matches the ideal behavior.
The loss function is used to train a model, adjusting the weights to reduce the loss.
The loss function is not used after the model is trained. The loss function must be
differentiable because it defines the gradient flow through the neural network by back-
propagation. Therefore, the loss function must only use differentiable operations from
the TensorFlow library, such as those found in the tf.math, tf.nn, tf.keras.backend,
or the tf.keras.losses APIs.

Implementing a loss function can be more intricate than other components like the
layers or the blocks. When computing derivatives during training, TensorFlow must
track variables, consuming memory and time. Training is expensive, and thus the loss
function is an optimization target. Not all computations in the loss function need to be
derived. Thus, to keep the loss function and the overall footprint of the loss function
in check, it is best to tell TensorFlow what to ignore when computing your derivatives.
This can be accomplished by using the tf.stop_gradient method. This operation will
mark tensors so that the gradient tape will view them as a constant, and ignore any
computation that lead to the creation of the flagged tensor.

Since it is a mathematical function, the loss function derivative can be manually
computed and verified. During our implementation of the YOLO exemplars, we found it
necessary to manually compute several loss function derivatives in order to understand
the causes of differences between the Darknet and TensorFlow implementations.
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6.4 Testing & Debugging

During our exemplar implementation, we introduced and later repaired two types of
bugs. “Programmer bugs” are logical errors that are not specific to deep learning, e.g.,
off-by-one errors. “Framework bugs” involved misunderstandings of the APIs of the deep
learning framework. We found most of our programmer bugs early on (e.g., they caused
crashes), but did not find many framework bugs until later (e.g., they degraded end-to-
end model accuracy).

Each component of the implementation was tested individually (unit testing). Then,
after integration, the entire network was tested. Throughout, we applied two main types
of testing: differential testing and visual testing. Differential testing compares the output
of the original implementation to the re-implementation numerically, whereas in visual
testing, it is the programmer’s responsibility to use appropriate data visualization tech-
niques and then manually compare the outputs of both models. Details of both testing

methods are provided in §6.4.2|and §6.4.3|

6.4.1 Unit Testing

Unit Testing must be performed on each component using unit test cases. This will
ensure that all components perform as expected prior to component integration. Thus,
if there are any inaccuracy in the final implementation after component integration, we
can focus on the component boundaries [

Unit Testing - Data Pipeline. Since the Data Pipeline is non-deterministic, the
randomized variables must be fixed during the testing phase. Each pre-processing oper-
ation must be tested separately by passing a sample image through the original pipeline
and your TensorFlow pipeline. Each operation must be tested using differential testing
and if this fails, apply visual testing. Since the Data Pipeline is the rate-determining step
for the training process, the time consumption of the overall pipeline must be noted and
compared with the original implementation. If it is significantly slower than the original
one, then it must be modified by optimizing each operation.

Unit Testing - Model. We applied several types of unit tests to the model.

* Passthrough tests check whether data can pass through the model. These are sim-
ilar to so-called “sanity tests” or “smoke tests”. If they fail, they indicate that the
model architecture is not connected properly, or that the output shape of some
model layer is incorrect. The pass-through test can be applied to layers and build-
ing blocks, while the other tests require the full model.

* Serialization tests confirm that the model is serializable and deserializable. This
verifies the get _config and from_config functions of the model and verifies that the
model can be saved and checkpointed.

* Gradient tests calculate the model’s gradient using a gradient tape and check that
the output is differentiable on every input. Gradient tapes are used to store the
operations and gradient values for automatic differentiation, which makes sure that

“In TensorFlow, unit test cases are made using t f.test .TestCase.
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only the necessary tensors are differentiated. If the model has a non-differential
component, an element of the gradient will be None and the input has no effect on
the output. This likely means that the input is not used correctly in the model and
there is a bug in the model.

* Fixed-weight tests involve loading pre-trained weights from another implementation
of the model, printing the output of each layer, and comparing to the other imple-
mentation. This will help identify which particular layer is incorrect in the model.
Model elements, namely blocks and layer, must be tested similar to the model.

Unit Testing - Loss Function. For testing the loss function, generate random ten-
sors, feed them into both implementations (yours and the comparison implementation),
and compare the output. The outputs may not be identical due to framework rounding
for numerical types, so if the outputs are within rounding errors of one another (de-
termined manually), then it can be concluded that the loss function is correct. Each
component of the loss function can be tested separately.

6.4.2 Differential Testing

Differential Testing is the process of comparing two supposedly-identical systems by
checking whether they are input-output compatible [34]. Given the purpose and context
of exemplar implementations, differential testing is a natural validation approach.

Differential testing can be applied to deterministic and probabilistic components, but
the approach will vary. If the component is deterministic, then the same input can
be passed in the original and reimplemented component and simply compared (within
floating-point approximation). If the component is probabilistic, then checkpoints can
be run using the same weights, which will convert the process into a deterministic com-
parison. Alternatively, probabilistic components can be checked for equality within a
tolerance.

As recently demonstrated by Pham et al. [26], crossing deep learning framework
boundaries introduces additional variance. They report that in two deep learning frame-
works, even with an identical training schedule applied to the same model, the trained
weights may not match. The accuracy can vary significantly, and thus, training should
not be used as the only final testing method. The original weights/checkpoint should
be loaded into the network and then the corresponding outputs must be compared to
the original implementation. This will remove the non-deterministic process of training,
and thus, will serve as an accurate testing method for model comparison. We described
these as “fixed-weight tests”.

Due to differences between programming languages and deep learning frameworks,
there are limits to the granularity at which differential testing can be applied. Language
and framework semantics may require implementing the same functionality in different
ways. In this case, the sub-steps of these different implementations cannot be compared
using differential testing. Therefore, unit testing complements differential testing. At a
coarse granularity, differential testing is valuable; at fine granularity, unit testing is
needful.
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6.4.3 Visual Testing

We found that differential testing worked well in most cases, but that it was difficult
to apply to all components. For example, the overall Data Pipeline has complex proba-
bilistic output whose properties are hard to measure for use in an automated compar-
ison. In this case, we found Visual Testing useful. We visually inspected the outputs
of both pipelines on a sample input and looked for a noticeable difference between the
two. In the case of YOLO, since the final output is based on bounding boxes, the re-
sulting output will have a confidence level associated with each box. Ensure that the
re-implementation output format matches the original implementation format, such as
dimensions and color in the case of images.

Simple errors, such as image padding, can be detected via visual testing. Incorrect
padding can be noticed as soon as the image is printed — these errors may be easier to
“see” than to measure. However, for more intricate checks, such as hit-maps, the data
visualization must be modified, as a simple printed image will not be sufficient. Once
the hit-map visualization is printed, it can be compared to the original implementation
and bugs can be identified. At some point a visual inspection becomes inadequate, and
automated fuzzy comparisons are necessary.

6.4.4 Fault Localization

Based on what aspect of the model output is different from the expected output, the
location of a fault can be narrowed down to one of the three main components of the
implementation. If the data augmentation outputs do not match the comparison imple-
mentation, then the bug can be localized to the Data Pipeline. To test the model, use
the model . summary function to obtain the number of parameters and compare each layer
to the original implementation. Finally, to test the loss function, use the same training
schedule as the original implementation. If the loss curves are dissimilar, the bug likely
lies in the loss function.

It took us several months to debug our exemplar implementation. Bug localization
was a bottleneck in the model engineering process.

6.4.5 Debugging Practices

One difficulty in testing an exemplar implementation is the cost (e.g., cloud spend) re-
quired to train a model during the code-test-debug-fix cycle. From our experimentation,
it is seen that 70% of final results were obtained within 10-25% of training, similar to
an “80-20 rule”. Thus, we advise that if the evaluation metric is not comparable to the
original implementation after 25% of the training, then your implementation will require
debugging. This shortens the debugging cycle as the entire training process does not
need to complete in order to identify an error.

During the debugging process, maintain consistent configurations and a log file of
all the changes made to track results (provenance). Debugging is time-consuming, so it
must initially be applied towards components that will increase the evaluation metric for
the implementation. For example, correcting the loss function will have a major impact
on the weights of the model.
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6.5 Component Integration

While assembling the required components, ensure that all model parts are consistent
with one another. All components must be integrated with the Task Structure mentioned
in Within the Task Structure, the data pipeline, model, loss function and metrics
are built. If there are interfacing issues between components, these will arise while
running the task. The task must handle the integration issues by making all formats
uniform such conversion functions, such as the bounding boxes format in YOLO.

6.5.1 Integration Issues

Per Figure we divided engineering work among sub-teams by component. Each
team developed and tested their components independently. Unit testing is discussed
in §6.4.1|in conjunction with broader testing concerns. After unit testing, we combined
the components. The integration process uncovered several issues. The main problems
that we encountered during component integration were type errors and interface er-
rors. Such issues are straight-forward to fix and will require minor modifications, such
as casting or size adjustment, to the code-base. All integration issues are caught by the
compiler and the error messages provided clearly indicate the type of inconsistency that
has occurred.

Type Errors. In TensorFlow, several functions accept only certain types and thus,
variable types must be carefully selected and cast when required. For example: if the
data pipeline outputs bfloat16, but the model requires another type as input, then it
must be cast at the interface.

Pipeline-Model Errors. Throughout the model, shape consistency must be main-
tained so that there are no errors when performing tensor and matrix operations. For
example: if a computer vision model requires a particular dimension image as an input
to the first layer, but the data pipeline outputs a different dimension, an image resize or
crop operation must be performed to properly interface the data pipeline and the model.

Model-Loss Errors. Each entity in a machine learning model can be encoded differ-
ently based on the engineer’s judgment. For example, in object detection, a bounding
box can be defined in terms of the center, height and width or two opposite corners.
When integrating the loss function and the model, ensure that both components use the
same attributes to define a bounding box.

6.6 Evaluation

Once the individual components are determined to be correct using individual testing
(§6.4.1), and they have been integrated (§6.5), the next step is to check if the entire model
is functioning as expected. The target metrics must be implemented correctly and then
used for comparison. If all target metrics match those seen in the original implementa-
tion, then it likely that the model is an accurate reimplementation. However, recall that
these metrics are aggregate summaries of the performance of the model. There are cases
where the metrics can match, but the model’s output remains systematically incorrect.
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6.6.1 Metric Evaluation

The metric that is being used to determine the training condition of the model must
be the same metric that is maximized in the original paper. Some examples of the
metrics are accuracy for classification models, Mean Squared Error (MSE) for regression
models, Intersection over Union (IoU) for computer vision models, and Perplexity for
natural language processing models. Before implementing a custom metric, check if the
metric exists in the TensorFlow.keras.metrics library or the TensorFlow Model Garden.
If the metric is not found in either of those locations, then custom metric implementation
is necessary. For our YOLO model family, the metrics were already implemented in the
Model Garden as coco_evaluator.py. If a custom metric is needed, then inherit from
TensorFlow.keras.metrics.Metric and use functions from TensorFlow.Math to do the
necessary computations. Most state-of-the-art models use a metric that is already a
built-in TensorFlow metric or can be made into a custom one using TensorFlow.Math
functions.

Comparing obtained metrics to the target metrics is done to determine the accuracy
the reimplementation. If the metrics output is off at the early stage of training, tweak
the learning rate or make other suitable modifications. For Object Detection, the main
metric that YOLO uses is Mean Average Precision (mAP), which can be compared by
using the same dataset as the original implementation.

6.6.2 Unit Evaluation

Metric evaluation will state whether the re-implementation has identical aggregate per-
formance when compared to the original implementation. However, this does not imply
that the models produce identical results. Using metric evaluation for model evalua-
tion will provide a rough estimate for re-implementation accuracy, but more direct and
involved testing is required. For example, in the case of YOLO, if the original imple-
mentation generates bounding boxes that are all 5% too far left from the ground truth,
and the re-implementation generates boxes that are all 5% too far right from the ground
truth, then the mAP metric will be identical for both, but it cannot be claimed that the
model is accurately reproduced.

Therefore, in addition to evaluating the model on a large dataset, the model should
also be evaluated on a small set of inputs. This is called Unit Evaluation: evaluating an
individual input, e.g., an image, and comparing it to the original implementation. For
YOLO, when using unit evaluation, the bounding boxes can be manually compared. This
process should be repeated for multiple images. If a trend is observed, such as in the
case mentioned above, then the model must be adjusted accordingly. Unit evaluation
is done using the help of visual testing, as described in §6.4.3] This process can be
automated, but we did not find it necessary to do so.

6.7 Portability Considerations

For an implementation to be published to the TensorFlow Model Garden, it must be
capable of training and evaluation across the common classes of processors: Central
Processing Unit (CPU), Graphics Processing Unit (GPU), Tensor Processing Unit (TPU);
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and in resource-poor environments like mobile devices (via TFLite). Until now, we have
been focused on functionality, and not the portability of the implementation.

Training and evaluation on a TPU and a mobile device are the most restrictive, with
two main constraints. The first constraint is that these contexts support limited op-
erations. We have found the public documentation somewhat wanting in this regard.
Some operations are permitted, but only in certain configurations and situations. For
example, at time of writing, TPU operations require bfloat16 type for input parameters,
and the upsampling operation behaves correctly during forward propagation of the net-
work but not backward on the TPU. The other constraint is the shape of the tensor must
be known at each stage of the model. If the shape is unknown for a critical operation,
then the process will throw an error, else it will take longer to train. The output shape
for a particular layer must be calculated in advance for memory allocation purposes.

We advise you to try the operations that you plan to use early on to test for support.
In addition, run your completed model on both a TPU and a mobile device to check
for a change in the model behavior as compared to the behavior on a CPU or GPU. All
models are capable of running on a CPU, as long as they compile correctly. GPU has
certain restrictions based on the computational power required for the operation, but all
operations will function correctly with differing speeds.

6.8 Model Code Optimization

After the model meets the target accuracy metrics and is capable of training and running
on a CPU, GPU, and TPU, the final step of the engineering process is to optimize the
model speed. The model must be optimized without changing the output of the machine
learning model. An example of this would be replacing for loops with tensor algebra
for parallel computation. There are two main aspects of model optimization: graph
execution and model training.

6.8.1 Graph Execution

Graph execution time can be optimized by using existing TensorFlow function calls
rather than custom operations, because these functions have been optimized. Shape
consistency must be maintained throughout the model and it must match the original
implementation at each layer. Identity layers and blocks should be removed to reduce
graph size and decrease number of operations and parameters. Memory occupied by the
model graph must also be carefully allocated by removing bottlenecks and optimizing
parameters based on the device.

6.8.2 Model Training

Based on the device being used for training, the model training time and efficiency will
vary drastically. However, there are certain measures that can be taken to increase the
training efficiency on average. The Data Pipeline operations have a strong effect on the
training time and hence, the operations used in the Data Pipeline stage must be efficient

8See, for example, https://cloud.google.com/tpu/docs/tensorflow—ops.
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and based on TensorFlow built-in operations whenever possible. It is imperative to
adjust the epochs and other parameters based on whether the training device is a CPU,
GPU or TPU. Some of the Data Pipeline pre-processing operations take a long time on a
CPU because they are computationally expensive. For example: in a previous iteration
of the YOLO Data Pipeline, image blurring was included, which required the convolution
operation. However, all the remaining operations did not require GPU resources and
worked optimally on a CPU. Transitioning to a GPU for only one operation and then
back to the CPU would be time-consuming. This issue can be addressed by moving the
blurring operation to the end of the Data Pipeline, and transitioning the data to the GPU
before performing blurring. Then, blurring is done on the GPU, and the training process
can begin immediately after.

Thus, the order of operations can influence the model’s training time. Within the
bounds of commutativity, operations may be shuffled as an optimization. We note that
this breaks the modular design of the data pipeline; breaking module boundaries is a
common effect of performance optimization.

7 Pre-Release

Once the model engineering has been completed, there are some essential steps before
submitted the final model to be published in the TensorFlow Model Garden. The fol-
lowing section describes the internal review steps that our team took before external
review.

7.1 Code & Reproducibility Review

Lack of proper documentation in model repositories is a problem within the ML research
community [35]. The Model Garden serves as a center for Exemplar Machine Learning
Models with respect to accuracy, structure, and documentation, to tackle the problem
of machine learning code reproducibility. Your TensorFlow implementation should be
able to reproduce the results obtained in the original implementation while providing
sufficient documentation for companies needing to use the model for industry purposes.

7.1.1 Internal Review Process

Before submitting code to the Model Garden, internally review the repository for func-
tionality and documentation. Our internal review process:

¢ Compilation: Run the model on a CPU, GPU, and TPU to ensure that there are no
errors of any kind (complication, execution, etc.)

* Training: Begin the training process on the model with the appropriate training
schedule and check if the metrics are behaving correctly.

* Evaluation: Load the weights from the original implementation and check if the
target metrics are attained.
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* Programming Standards: Ensure that all code is appropriate formatted to adhere
to the Model Garden’s style guide.

* Reproducibility: Ensure that all files have proper documentation such as code
block explanations, function inputs and outputs, and a detailed README.

* Consistency: Ensure that the folder names are identical to the Model Garden
(Table [1) and all the files are in their respective folders to ease the merging process
during external review.

7.1.2 Repository Documentation

The objective of having proper documentation is to allow the code to be purposed by
many users, and provide them with sufficient instructions and details regarding the
functionality of the implementation and its components. Gundersen et al. analyze the
relationship between reproducibility and the documentation requirements and indicate
that a well-documented work can largely facilitate reproducibility [2, [1]. The main forms
of required documentation are: repository README and code comments.

Repository README. When writing a README for your repository, follow the tem-
plate structure of the main TFMG repository. In the README, provide instructions for
installation, training, and evaluation. If the model is customizable, e.g., allowing the
user to choose from several models in the YOLO family, this customization should be
discussed in the README. The README should be reviewed during the final stages of
the project, in accordance with the guidelines provided by the Model Garden.

Code Comments. Functions should begin with a comment stating the purpose of
the function, an explanation of all the inputs required and the outputs returned, along
with the shape, rank and type of all the arguments (perhaps given with type annotation).
In addition, each non-trivial code block should be documented with its purpose and the
mathematical functions it uses.

7.2 Tutorials & Demos

Before a model is placed in the TensorFlow Model Garden, it should be readily available
for public use with the help of demonstrations and tutorials. Demonstrations show that
the exemplar is an accurate model reimplementation. Tutorials explain how to use the
model and what steps to complete before applying it to specific tasks.

7.2.1 Demonstrations

When creating a demonstration, all the metrics indicated in the original paper must be
presented. To verify that a model is completed, the final demonstration to Google repre-
sentatives should show that the exemplar implementation’s performance matches that
of the primary implementation on all the metrics presented in the original research pa-
per. Our team provided two main demonstrations: a TensorFlow Lite Mobile Application
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(for Android and iOS) and a video demonstration indicating Frames per Second (FPS)
and Mean Average Precision mAPH

7.2.2 Creating a Tutorial

Before developing a tutorial, the first step is to create a structure that it must follow.
This can done in the form of a flowchart, as shown in Figure 4, Google has official
tutorials on their repository, which can be used as a template when creating a Google
Colab or README. Our team has developed a set of two main tutorials to showcase
the YOLO model’s accurate functioning: TensorFlow datasets (TFDS) Usage and YOLO
Model Usage Colab tutorial. Throughout the tutorial development process, ensure that
all steps are well-documented and simplified, with proper examples and resources.

Selecting a demonstration dataset. Most tutorials require a dataset to showcase
the results. The particular dataset to be used must be carefully selected to ensure the
tutorial is accurate from a legality perspective. It is recommended toe select a dataset
that is frequently used within the ML community, such as COCO [36] and VOC [37].

When using a public dataset for the tutorial, licensing must be considered since the
tutorial will be available for public access on the TensorFlow Model Garden repository. It
must be checked in the License Terms & Conditions whether or not public distribution
of the full dataset or a sub-dataset is allowed for commercial activity. The license must
give permission to redistribute and modify the images for free and permanently, such as
Creative Commons (CC) [38]. For example: COCO is sometimes difficult to use because
its constituent images have varying licenses (only 5% are unrestricted) and require at-
tribution, with constraints on adaptation and commercial activity usage. For the fields
of computer vision and natural language processing, TensorFlow has several internal
datasets (TFDS that might work just as well.

In the case of the TensorFlow datasets Tutorial, the team did not use ImageNet be-
cause the licensing did not allow a subset of this dataset to be created and distributed.
ImageNet is frequently used for the metric evaluation of object detection models because
of its size, labelling and variety of objects [39]. To replace ImageNet, the Openlmage
Dataset (OID) was used, because all images have “CC BY 2.0” license, which means they
can be shared or adapted and only attribution is required.

8 Release

8.1 External Review

After the model engineering process is completed and internally reviewed by the team,
the components must be submitted to Google to publish in the Model Garden. This
submission is done in phases in the form of GitHub Pull Requests (PR).

9See https://github.com/PurdueCAM2Project/TensorFlowModels/tree/main/yolo/demos/
examples.
VSee https://www.tensorflow.org/datasetsl
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Figure 4: TensorFlow datasets Tutorial Structure. Each step of this structure must
have clear instructions within the tutorial.

8.1.1 Pull Request Format

When submitting a GitHub Pull Request to the TensorFlow Model Garden repository, it
must provide all the details mentioned in the provided format. Each component of the
model (Data Pipeline, Model, Loss Function) should be submitted separately to reduce
the difficulty of reviewing each PR. The size of the PR will vary based on the component
in the PR. We suggest submittign two PRs for each model component, one for utility
operations and another for the actual component.

8.1.2 Placement in TFMG

During the initially accepted PRs, the model will be placed in the appropriate beta folder
within the repository, indicating that it has not been completed. Upon final approval,
the model will be placed in the official folder within the TensorFlow Model Garden
repository, where it can be used and extended by the community.

8.2 Final Training & Publish Weights

Once the external review is completed and the final model has been published to the Ten-
sorFlow Model Garden, it is the team’s responsibility to begin the final training process
to obtain the weights for the Machine Learning model. After the final weights have been
obtained, they must be published along with a pre-trained model (TensorFlow Saved-
Model format) to the TensorFlow Hub. For Image Classification models, it is required
to provide the option of loading the TFHub model with or without the head. Upon pub-
lishing the model to the TFHub, it must be named appropriately in accordance with the
current labeling system — the suffix .vx where X is the version of the model.
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9 Effective Engineering Practices

We have begun to identify effective engineering practices for the model exemplar engi-
neering process. These practices fall under three categories: software reuse, engineering
tools, and project management.

9.1 Software Reuse

The TensorFlow Model Garden has a modular structure, supporting component re-use
between exemplar implementations. Modularity both simplifies implementation, and
accelerates innovation: model components can be recombined into a new model per-
forming a different function. For example, the YOLO family is targeted towards object
detection, but can be used for image classification by connecting an image classification
head to the current backbone.

9.1.1 Reusing Code

Components can be re-used from the basic building blocks of the TensorFlow API, and
from higher-level components from other exemplars. The TensorFlow API [40] docu-
ments the symbols and operations available within TensorFlow. If your desired opera-
tion is not found, look through the ops folder of other projects within the Model Garden.
When a custom operation has been tested and verified for accuracy, it will be added
to a list of all existing Model Garden custom operations. Once a custom operation is
developed by a team and published in the Model Garden, it can be used by another
team within the Gardener community. All custom operations within the Model Garden
have proper documentation and thus, reading through the file comments will help de-
termine if the operation satisfies your requirements or if modification is required. If the
file comments are insufficient, then searching through the file for keywords may suffice.

9.1.2 Writing Reusable Code

When custom TensorFlow implementation is required, always check if there exists an
accurate implementation within the official TensorFlow API or the TensorFlow Model
Garden. If the operation are not found, then your team is responsible for constructing
the custom operation. It must then be included within the ops folder, so other developers
can easily find your operation if they are looking for something similar. In your custom
operations, prefer TensorFlow APIs and Model Garden operations whenever possible to
reduce external dependencies. This will ensure that your code can be used by other
TFMG developers without imports from outside the Model Garden.

Our team has developed many custom operations, which can be used by any team
contributing to the Vision API. As the number of Model Garden contributors increases,
the availability body of reusable code will reduce the need for new code.
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9.1.3 Case Study of Code Reusability

We have also started work on an implementation of CenterNet in TensorFlow Model
Garden based on the Object Detection API (ODAPI) implementation. This experience was
different from the YOLO exemplar: there is already a TensorFlow-based implementation
from ODAPI, and large pieces of the code can be reused directly without modification.

The challenge is to categorize functions and components of the model based on their
reusability in the new API. For example, some functions only require TensorFlow or its
dependencies, but others require functions from ODAPI, which cannot be used directly
within the Model Garden without introducing undesirable dependencies. These func-
tions need to be rewritten or adjusted in order to be used in the Model Garden.

When replicating a neural network, the debugging efforts will depend on the target
speed of the model. For example, if the current accuracy is 2-3% lower than the final
target speed of the model, then code optimization will usually not be required, but de-
bugging will end up bridging the performance gap. However, the model purpose will
change the debugging approach.

9.2 Engineering Tools

The Exemplar Engineering Problem is difficult, and tools are helpful. Our team is cur-
rently developing software engineering tools for this purpose.

9.2.1 Linting

A main aspect of code review is documentation and formatting. Google has specific
guidelines for writing code, so our team is currently developing a custom linter using
the current TensorFlow Model Garden Pylint config file. This linter will also detect if an
operation can be used on a Tensor Processing Unit (TPU) or not, which is described in

§6.7,

9.2.2 VM Monitoring

For training and testing purposes, having a virtual machine (VM) can help with compu-
tationally expensive tasks. Google Cloud Platform (GCP) is frequently used by ML engi-
neers for model training. Our team is currently working on an automated tool to monitor
our GCP account and ensure that the budget is not exceeded. This VM monitoring tool
will turn the VM on and off based on when a task is started and completed. This tool
will also provide warning notifications when the budget has nearly been reached and will
automatically shut down the VM when it meets the budget limit.

9.3 Project Management

Due to the level of expertise required for publishing a model in the TensorFlow Model
Garden, teams are expected to be large.[ir] To manage teams of such sizes, proper

'We acknowledge that “man-months” are mythical. Since our team is composed largely of undergraduate
researchers, a larger team permits progress amidst the havoc of the academic semester.
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project management techniques must be practised to minimize idle time and maximize
efficiency. The techniques and advice provided below are meant for other institutions
thinking of creating an engineering team to join the SIG.

9.3.1 Team Logistics

Our engineering team was established in May 2020 and is currently in the External Re-
view stage for the YOLO model family and the Model Engineering stage for the CenterNet
Model [41]. Our team currently has 27 members from Purdue University (24 under-
graduate students, 1 graduate student, 2 faculty advisors) and 2 members from Loyola
University Chicago (1 undergraduate student, 1 faculty advisor). Based on our experi-
ence, we recommend a team size of 15 to 25, with a maximum of a 2:1 ratio of new team
members to experienced members. Based on our experience, we suggest sub-team sizes
of:

* Data Pipeline — 2 members
* Model — 4 members

¢ Loss Function — 3 members

Our team also calculated the amount of time expected to complete a model with a fixed
number of members based on the rate of task completion. Assuming 15 person-hours
per week, the following times are expected to complete a machine learning model:

e All Experienced Members: 2.5-3 months
* 1:1 New to Experienced Member Ratio: 3.5-5 months

¢ 2:1 New to Experienced Member Ratio: 5-6.5 months

9.3.2 Project Management Tools and Practices

To keep the team organized and accountable, our team used Monday.co for assigning
tasks and establishing deadlines. All members are required to document their progress
and share their results during a weekly meeting. The leaders of the team should es-
tablish short-term and long-term goals. For example, our short term goal is to place
the YOLO model family in the TensorFlow Model Garden, while our long-term goal is to
provide a deeper understanding of large scale machine learning projects and document
best practices for model engineering.

9.3.3 Member Onboarding

When creating an engineering team, members should be selected on the basis of char-
acter, technical expertise, and interest. Successful members have an understanding of
software engineering practices, experience in Python, and some training in the principles
of machine learning. TensorFlow experience will help, but can be learned along the way.

12See https://www.monday . coml.

28


https://www.monday.com

Members will have varying expertise, so a standardized onboarding process should be
established to ensure that members are ready for the model engineering process as soon
as possible. Our team conducted interviews which tested candidates on their ability to
code in Python and apply their existing Python knowledge with TensorFlow to solve a
basic machine learning problem.

After the interview process, all selected members were given an Onboarding Assign-
ment designed by the experienced members of the team. The objective of the onboarding
assignment is to expose all members to the core aspects of the model engineering pro-
cess: the Data Pipeline, the Model and the Loss Function. This assignment used Python
software and TensorFlow to solve problems in each of these areas. Members were then
placed on a sub-team based on which part of their assignment worked most efficiently.
The onboarding process will evolve with the team size and structure, but our process
can be used as a template during initial stages.

10 Conclusion

We hope our experiences help other contributors prepare submissions to the TensorFlow
Model Garden. Through a community effort, we hope to promote machine learning
cyberinfrastructure that facilitates open science and the more rapid practical adoption
of state-of-the-art techniques.
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A Model Components

Prior to the core ML engineering process for deep learning-based models, all teams must
have a basic understanding of neural networks and their operationalization in typical
deep learning frameworks. These components are depicted as shown in Figure [3| In
these frameworks, a neural network’s (model’s) architecture is represented as a directed
graph for data processing, decomposed into blocks, then layers, and then operations.
We introduce the architecture starting from the most basic to the most complex units.

A.1 Operations

The operation is the basic unit in a neural network. It can be defined as a structure or
function; it operates on data, but holds no weights itself.

Differentiability. In TensorFlow, these operations can be broken down into 2 fun-
damental categories: differentiable and non-differentiable. Differentiable operations are
those that can be used inside the neural network directly. These are operations that are
used to forward propagate or to optimize a neural network. The best way to construct one
of these operations is to use the tensorflow.math API. The majority of these functions
have a predefined and optimized inverse or differentiation method that guarantees that
any operation that uses them will be differentiable by TensorFlow. Non-differentiable
operations can be used in post-processing and pre-processing.

For Differentiable Operations, the best way to test these functions is to use the gra-
dient tape to watch an input tensor and compute the gradient of that tensor. If the
function is differentiable, the gradient output put on the tape will not have any values of
None contained within it.

Execution Mode. All operations must be usable in both eager and compiled exe-
cutions. The tensorflow.math API also ensures that operations will be usable in both
eager and compiled execution. Eager execution tells TensorFlow to compute all values
at runtime making all operation run slower as each dependency is not know ahead of
time. Graph or Compiled Execution is a system that tells the TensorFlow engine to pre-
compute and link all dependencies ahead of time relative to a some place holder input.
This essentially stores how to get from input to output for a string of operations, allow-
ing TensorFlow to reference this binary when ever it is needed in order to operate much
faster. For more information on how this works and why it is used as on optimization,
look into code compilation vs code interpretation vs just in time code compilation.

These operations do not need to be limited to the tensorflow.math API, but they
must still be usable in both graph and compiled executions. If you limit yourself to only
TensorFlow operations, that is, any function found in the TensorFlow API, or any built-
in Python functions, this should not be an issue. However, if there is ever an instance
that requires the use of non-TensorFlow functions, like numpy, the best way to allow
graph execution is to use tensorflow.py function. Using tensorflow.py_function will
tell TensorFlow that the operation contained within the function cannot be compiled in
graph execution and therefore to switch to eager execution when operating in that code

2For basic TensorFlow resources, refer to the TensorFlow guide at https://www.tensorflow.org/
guide.
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block. This will also give you access to the TensorFlow numpy conversion methods in the
Tensor class of TensorFlow, as these methods are only available to engineers in eager
execution.

For all operations in general, the best way to test them for usage in both eager and
graph execution, is to wrap the function with the @t f. function decorator. This decorator
will tell the TensorFlow Engine to compile to the subsequent function, allowing you to
test the function for graph execution.

A.2 Layers

A layer is an extension of an operation that is parameterized in some way by a consistent
input to a given operation. This layer is the fundamental trainable unit from which
all building blocks and models are built from. Typically, this parameterization is the
instantiation and storing of weights. In most ML frameworks, layers are used to contain
a set of operations that learn about data in a novel way. Typically this is done by
assigning weights to each operation.

As an example of the importance of this parameterization, consider the difference
between a convolution operation and a convolution layer. The convolution operation
is a mathematical operation that performs a weighted summation using the two input
tensors. The convolution layer sets one of the inputs to the convolution operation to be
a learnable parameter. This parameter is called the kernel of the convolution and acts
like a filter on the input to the layer. During evaluation and forward propagation, this
parameter is held constant. During backpropagation, the gradient of the loss function is
evaluated with respect to all of the parameters in the model, so that the parameter can
be optimized. In this way, the parameters act differently from inputs, because they can
only be updated by the optimizer instead of fed into the model; and act differently from
constants, because they are changed during training.

The number of inputs and existence of parameters can make the layer semantically
different than the operation, but this is not always the case. Layers can be memoryless
and merely wrap the underlying operation. The semantic meaning of the layer within
the model determines whether or not to parameterize it.

Every differentiable operation can be encapsulated in a layer through adding parame-
ters as with the convolution example. As mentioned before, non-differentiable operations
are not used in the model itself and are used in preprocessing and postprocessing. In
addition, multiple operations can be combined together with or without parameters to
make a layer. The ultimate distinction between layers and groups of operations is that
layers are used in the final model and may have parameters while individual operations
are usually used elsewhere (preprocessing and postprocessing).

A.3 Blocks

A block is an organized set of layers that are common repeating units across many mod-
els. The block is used to decompose a model in the same way that functions decompose
a program into smaller pieces to eliminate redundancy. This reduces the likelihood that
bugs can be introduced in the code and allows for easier debugging of the model.
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Blocks are usually relatively small, only consisting of 2-6 layers. Blocks should usu-
ally be reusable across many different models because the repeating structure has a
unified purpose in the models that doesn’t change from model to model. In order to do
this, blocks, like layers, still have many parameters in order for the blocks to be relatively
flexible and usable across many models.

All blocks required for a particular re-implementation can be defined in one file, and
when the block is required within the main model, it will be a simple function call.
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