
Snapshot Metrics Are Not Enough: Analyzing Software
Repositories with Longitudinal Metrics

Nicholas Synovic

Loyola University Chicago

Chicago, IL, USA

Matt Hyatt

Loyola University Chicago

Chicago, IL, USA

Rohan Sethi

Loyola University Chicago

Chicago, IL, USA

Sohini Thota

Loyola University Chicago

Chicago, IL, USA

Shilpika

University of California at Davis

Davis, CA, USA

Allan J. Miller

Loyola University Chicago

Chicago, IL, USA

Wenxin Jiang

Purdue University

West Lafayette, IN, USA

Emmanuel S. Amobi

Loyola University Chicago

Chicago, IL, USA

Austin Pinderski

Loyola University Chicago

Chicago, IL, USA

Konstantin Läufer

Loyola University Chicago

Chicago, IL, USA

Nicholas J. Hayward

Loyola University Chicago

Chicago, IL, USA

Neil Klingensmith

Loyola University Chicago

Chicago, IL, USA

James C. Davis

Purdue University

West Lafayette, IN, USA

George K. Thiruvathukal

Loyola University Chicago

Chicago, IL, USA

ABSTRACT
Software metrics capture information about software development

processes and products. These metrics support decision-making,

e.g., in team management or dependency selection. However, ex-

isting metrics tools measure only a snapshot of a software project.

Little attention has been given to enabling engineers to reason

about metric trends over time—longitudinal metrics that give in-

sight about process, not just product. In this work, we present PRIME
(PRocess MEtrics), a tool to compute and visualize process metrics.

The currently-supported metrics include productivity, issue density,

issue spoilage, and bus factor. We illustrate the value of longitudinal

data and conclude with a research agenda. The tool’s demo video

can be watched at https://bit.ly/ase2022-prime. Source code can be

found at https://github.com/SoftwareSystemsLaboratory/prime.

CCS CONCEPTS
• Software and its engineering; • General and reference →
Metrics;

KEYWORDS
Software metrics; Empirical software engineering

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00

https://doi.org/10.1145/3551349.3559517

ACM Reference Format:
Nicholas Synovic, Matt Hyatt, Rohan Sethi, Sohini Thota, Shilpika, Al-

lan J. Miller, Wenxin Jiang, Emmanuel S. Amobi, Austin Pinderski, Kon-

stantin Läufer, Nicholas J. Hayward, Neil Klingensmith, James C. Davis,

and George K. Thiruvathukal. 2022. Snapshot Metrics Are Not Enough: An-

alyzing Software Repositories with Longitudinal Metrics. In 37th IEEE/ACM
International Conference on Automated Software Engineering (ASE ’22), Oc-
tober 10–14, 2022, Rochester, MI, USA. ACM, New York, NY, USA, 4 pages.

https://doi.org/10.1145/3551349.3559517

1 INTRODUCTION
An effective software engineering process is correlated with high

software quality [18]. Measurements of software processes there-

fore give engineers insight into software quality [7]. Software met-

rics characterize the software engineering process (e.g., time to

fix a defect) and the engineered product (e.g., cyclomatic complex-

ity). Using software metrics, engineers and managers may improve

products and assess the risks of external software dependencies.

Tools for software metrics typically provide metrics on the cur-

rent project state, or “snapshot metrics,” rather than longitudinal

metrics (§2). While a snapshot can be useful—for example, it can

quickly reveal if a project has no test suite—it does not provide a

full picture of the longitudinal evolution of a software project. We
conjecture that engineers will make different decisions when presented
with snapshot metrics compared to longitudinal metrics (§5).

To evaluate a development process, one needs to measure the

history of the code. The classic Fenton & Bieman reference on

software metrics [7] establishes that measurement needs to be

related to a time range and scale for a meaningful longitudinal

assessment of software quality. Tools that measure quality need

to calculate both direct measurements and derived calculations at

consistent intervals to evaluate the process properly. Trends in

metrics can quantify software engineering decisions.

https://orcid.org/0000-0003-0413-4594
https://orcid.org/0000-0003-2608-8576
https://orcid.org/0000-0003-2495-686X
https://orcid.org/0000-0002-0452-5571
https://bit.ly/ase2022-prime
https://github.com/SoftwareSystemsLaboratory/prime
https://doi.org/10.1145/3551349.3559517
https://doi.org/10.1145/3551349.3559517

ASE ’22, October 10–14, 2022, Rochester, MI, USA Synovic et al.

To support our investigation of this research question, we present

PRIME [12] (PRocess MEtrics): an open-source tool that enables

engineers and researchers to analyze software projects with longitu-

dinal metrics. PRIME uses a modular Extract-Transform-Load (ETL)

pipeline architecture for ease of adoption and extension (§3), PRIME
currently supports the following metrics: code size, productivity,

bus factor, issue count, issue spoilage, and issue density (§4).

We close by proposing three studies facilitated by PRIME (§6):

(1) exploring engineers’ use of longitudinal metrics when assessing

their products; (2) exploring their use of longitudinal metrics during

dependency selection; and (3) analyzing the software supply chain

to identify potential weak links.

2 BACKGROUND AND RELATEDWORK
Process metrics are critical for improving software quality as agile

repositories may eventually become more established and require

regular maintenance. Although numerous efforts have focused on

mining open-source repositories, the current support for process

metrics—and visualizing them longitudinally—is mixed. In our sur-

vey of related efforts, we identified various tool types, including

scorecards, frameworks, dashboards, and platform monitors.

Scorecards assign a risk score for open source projects to assess

security risks and project health [3]. However, they are computed

as a snapshot metric and cannot easily express longitudinal effects.

Frameworks simplify the process of developing tools for mining

software repositories (MSR). Frameworks are typically libraries and

domain-specific languages (DSL) that researchers and engineers

integrate into their tools. The ishepard/pydriller [19] library and

the Boa [5] DSL meet this criterion. These frameworks are not

ready-to-use MSR tools but provide building blocks for developing

new MSR tools for the analysis of version control systems (VCS).

Dashboards are built into online VCS platforms and visualize

repository and issue tracker trends. GitHub Insights [2] and GitLab

Insights [8] provide longitudinal metrics for hosted projects. How-

ever, these tools provide limited insights when it comes to process

metrics but can be expanded upon by the community [9].

Platform monitors are third-party analysis tools that compute

metrics for hosted packages. NPM [14] provides theNPMSearch [15]

analyzer for JavaScript packages, which tracks process metrics re-

garding issue trackers. The GoReportCard [10] is a monitor for Go

projects hosted on GitHub, which tracks code metrics. Aside from

dashboards, these tools compute process metrics as snapshots and

do not make longitudinal and trends visualization easy for users.

3 ARCHITECTURE
PRIME follows an Extract, Transform, Load (ETL) architecture (Fig-

ure 1). The ETL phases of the pipeline are each module or collection

of modules. In addition, the extraction and transformation stages of

the pipeline store data in text-encoded JSON files. By storing mea-

surements in a file rather than in memory during pipeline execution,

PRIME can be integrated with existing tools and pipelines.

PRIME extracts base measurements from a project’s version con-

trol system (VCS) and issue tracker during the API Phase. Here,
using the external cloc [1] and sloccount [17] utilities, PRIME
measures each commit of a repository and measures the size of

the repository in lines of code (LOC), thousands of lines of code

(KLOC), and the size difference between each sequential commit as

Git Repo
Commits

API

Issues
API

Metrics
Modules

JSON
Storage

Data Viz
GitHub Issue

Tracker

API Phase Metrics Phase Output Phase

Figure 1: System architecture of PRIME.

the delta thousands of lines of code (DKLOC). PRIME also extracts

issue report metadata by utilizing the REST API of a repository’s

host issue tracker.

PRIME transforms the extracted base measurements into derived

metrics during its Metrics Phase. At the moment, PRIME can

compute the following metrics: issue spoilage, issue/defect density,
productivity, and bus factor, which we will define below. Each met-

ric module takes in a text-encoded JSON file containing the base

measurements for commits, issues, or both.

After both the API and Metrics phases, data is loaded into either

text-encoded JSON files or visualized with MatPlotLib [11] in the

Output Phase. PRIME can export the JSON and visualization files

to integrate with other pipelines. Additionally, the visualizations

can be customized using style sheets, thereby allowing engineering

teams to implement style standards for their visualizations.

The ETL architecture allows engineers to use individual PRIME
modules for the metrics of interest. Furthermore, each phase of

the pipeline is configurable, reducing the time engineering teams

need to post-process the data to match their specific needs. Finally,

PRIME can be run on private repositories without exposing any

data or metrics charts for any given project.

4 METRICS IMPLEMENTED
To address the limitations of existing tools, PRIME computes longi-
tudinal process metrics. We chose the current set of metrics by their

ability to provide insights into the development process as well as

their ability to compute derived metrics. A prior survey informs

our choice of these metrics [6], where research software engineers

indicated that process metrics can be helpful. PRIME computes two

types of software metrics: (1) Direct metrics, which are measure-

ments of internal attributes of the process, and (2) derived metrics,
which are computed metrics from two or more direct metrics.

4.1 Direct Metrics
Direct metrics are measurements of a particular attribute of the

process involving no other attribute [7]. These measurements are

the foundation for the more complex metrics that PRIME computes.

1. Code Size: PRIME measures the size of a repository in terms

of the number of source lines of code normalized by 1000 reported

as KLOC. Changes in the KLOC (DKLOC) show the growth (or

shrinkage) of a repository over time.

2. Developer Count: PRIME measures this metric as the number

of unique developers who contribute code to a repository within a

time interval. By measuring developer count, engineering teams

Snapshot Metrics Are Not Enough: Analyzing Software Repositories with Longitudinal Metrics ASE ’22, October 10–14, 2022, Rochester, MI, USA

Figure 2: This figure shows the PRIME tool’s output for each supported longitudinal derived process metric applied to several
sample projects. The first pair depicts contrasting issue densities. The second pair depicts two projects with contrasting trends
in resolving issues. The third pair depicts two projects with contrasting productivity trends. The fourth pair depicts two projects
with contrasting bus factor binned to measure the number of core contributors each month.

can determine the amount of developer support in contributing

new code, maintaining existing code, and resolving bugs.

3. Issue Count: PRIME measures this as the count of the number

of open and closed issues reported in an issue tracker, including

feature requests, tasks, and bug reports, in addition to potential and

confirmed defects. If an online VCS has an issue tracker, this metric

also reports the count of open and closed pull requests.

4.2 Derived Metrics
Derived metrics capture interactions between direct metrics [7].

PRIME computes derived metrics to analyze and subsequently visu-

alize changes in the development process of a software product.

1. Issue Density: This metric tracks a project’s total number of

issues normalized by project size. Because we are interested in

open-source repositories on GitHub, we use the more general issue

density rather than defect density, which refers only to the ratio

of bug count to repository size. A high issue density, regardless

of confirmed defects, could signify an unhealthy repository. For

example, if there are many feature requests that are never acted

upon, then the development team is not implementing the features

that users want. This would be a possible warning sign for poor

customer support and, eventually, would lead to low customer or

user satisfaction [16].

2. Issue Spoilage: Issue spoilage is the weighted average age

of unresolved issues at a given time in the project timeline. With

further analysis, this metric calculates the age of issues with respect

to the project timeline to measure how quickly a project’s team

resolves issues. Issue spoilage can serve as a gauge of customer

support and the efficiency of software teams in resolving issues. For

instance, if issue spoilage increases in a time interval, new issues

are being created faster than the team can resolve old ones. On the

other hand, if the issue spoilage drops in a time interval, the team

resolves previous issues faster than new ones are created.

3. Productivity: Productivity measures the rate at which a de-

velopment team adds KLOC within a time interval [7]. Healthy

repositories will typically have high productivity. However, low

ASE ’22, October 10–14, 2022, Rochester, MI, USA Synovic et al.

productivity is not always a sign of a lack of productiveness, as

when efficient development teams are refactoring code KLOC may

not change significantly.

4. Bus Factor: Bus factor [4] is the number of developers on

a project team who would have to be “hit by a bus” to cause the

project to fail. This metric measures the employee turnover risk of

a project. However, as our work focuses on open-source projects,

we propose that this is a metric of the development community’s

interest as well. By analyzing bus factor longitudinally, users gain

insight into potential risks of the software development process.

While bus factor is not a classical process metric, it is well known

in the general SE literature that under-resourced projects carry a

high risk of falling out of maintenance [7].

5 DEMONSTRATION
Figure 2 shows all four process metrics for several repositories over

their entire project history. We chose projects from the RepoRe-

apers/reaper data set [13] in pairs that showed contrasting trends

in their process metrics to demonstrate possible insights from longi-

tudinal analysis. We have organized this figure to demonstrate the

potential for comparative analysis of process effectiveness, even

among projects that have a good score using existing scorecard
apps. The addition of process metrics clearly demonstrates that all

of these otherwise good projects may benefit from further exam-

ining their development process. This examination is especially

prudent when it comes to managing development while addressing

issues (issue density), addressing issues (issue spoilage),ensuring

appropriate resources (bus factor), or managing group priorities to

avoid team burnout (productivity).

6 PLANNED STUDIES
In the first study, we pose the research question: How do engineers
use longitudinal process metrics during their development process?
We hypothesize that basic metrics are used in many open-source

projects today, but the use of longitudinal metrics, particularly

process metrics, is limited. To perform this study, we will measure

the number of process metrics utilized and survey open-source

developers on established projects about why and how they use

these metrics in their development process.

In a second study, we pose the research question: Do longitudinal
metrics contribute to selecting dependencies in software composition?
Based on our survey of tools, we hypothesize that engineers take

little consideration of derived longitudinal process metrics but will

consider direct longitudinal process metrics as those are more preva-

lent when selecting dependencies for software development. To

perform this study, we intend to survey the current state of soft-

ware metrics tooling, and survey open-source engineers about their

utilization of longitudinal process metrics for dependency selection.

In our third study, we pose the research question: What role
can longitudinal process metrics play in analyzing dependencies in
open-source software? We hypothesize that many projects are likely

to depend on other projects that require process improvement, e.g.,
a third-party library with a risky bus factor. To perform this study,

we will examine the dependencies of well-known projects by using

PRIME to analyze each of the dependent projects for process-related

concerns. With PRIME, we can autonomously and automatically

compute the longitudinal metrics that are of concern to our study.

7 ACKNOWLEDGMENTS
Davis acknowledges support fromNSFOAC-2107230; Thiruvathukal

acknowledges NSF OAC-2107020 and NSF OAC-1445347; Davis and

Thiruvathukal acknowledge the Google TensorFlow Model Garden.

8 CONCLUSION
PRIME is an ongoing development effort to understand process ef-

fectiveness beyond snapshots of process metrics and support more

longitudinal analysis and visualization. This paper demonstrates

working software to compute four process metrics, which repre-

sent classical (e.g., issue density, issue spoilage, productivity) and
modern/agile (e.g., bus factor) metrics. We argue for the potential

of these tools to support future planned studies by showing their

ability to visualize long and short-term trends via simple and in-

tuitive charts. Future development efforts will include expanding

PRIME with support for more process metrics, emphasizing com-

parative visualizations, and expanding the number of data sources.

Future studies will build on this foundation to study the usage of

longitudinal metrics in practice, longitudinal metrics in selecting

dependencies, and the software supply chain.

REFERENCES
[1] cloc Contributors. 2021. AlDanial/cloc: 1.92. https://doi.org/10.5281/zenodo.

5760077

[2] GitHub Insights Contributors. 2022. GitHub Insights for Projects. https:

//docs.github.com/en/issues/planning-and-tracking-with-projects/viewing-

insights-from-your-project/about-insights-for-projects

[3] Scorecard Contributors. 2022. Security Scorecards. https://github.com/ossf/

scorecard original-date: 2020-10-09T14:48:27Z.

[4] Valerio Cosentino, Javier Luis Cánovas Izquierdo, and Jordi Cabot. 2015. Assessing

the bus factor of Git repositories. In 2015 IEEE 22nd International Conference on
Software Analysis, Evolution, and Reengineering (SANER). SANER, Unknown,
499–503. https://doi.org/10.1109/SANER.2015.7081864 ISSN: 1534-5351.

[5] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. 2013.

Boa: A language and infrastructure for analyzing ultra-large-scale software

repositories. In 2013 35th International Conference on Software Engineering (ICSE).
ACM, Unknown, 422–431. https://doi.org/10.1109/ICSE.2013.6606588 ISSN:

1558-1225.

[6] Nasir U. Eisty, George K. Thiruvathukal, and Jeffrey C. Carver. 2018. A Sur-

vey of Software Metric Use in Research Software Development. In 2018 IEEE
14th International Conference on e-Science (e-Science). IEEE, Amsterdam, 212–222.

https://doi.org/10.1109/eScience.2018.00036

[7] Norman Fenton and James Bieman. 2014. Software Metrics: A Rigorous and
Practical Approach, Third Edition (3rd edition ed.). CRC Press, Boca Raton.

[8] GitLab. 2019. GitLab Insights Documentation. https://docs.gitlab.com/ee/user/

project/insights

[9] GitLab. 2020. GitLab Insights Video. https://www.youtube.com/watch?v=

OMTfPsLa98I

[10] Go Report Card Contributors. 2022. Go Report Card. https://goreportcard.com/

[11] John D. Hunter. 2007. Matplotlib: A 2D Graphics Environment. Computing in
Science Engineering 9, 3 (May 2007), 90–95. https://doi.org/10.1109/MCSE.2007.55

Conference Name: Computing in Science Engineering.

[12] Matt Hyatt, Amy Kuhl, Jake Palmer, Rohan Sethi, Ethan Stoneman, Nicholas Syn-

ovic, Sohini Thota, and George K. Thiruvathukal. 2022. clime-metrics. Software
and Systems Laboratory. https://doi.org/10.5281/zenodo.6587880

[13] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. 2017.

Curating GitHub for engineered software projects. Empirical Software Engineering
22, 6 (Dec. 2017), 3219–3253. https://doi.org/10.1007/s10664-017-9512-6

[14] npm contributors. 2022. npm. https://www.npmjs.com/

[15] npms.io contributors. 2018. npms. https://npms.io/

[16] William Scherkenbach. 2011. The Deming Route to Quality and Productivity.
WWS, Inc., Unknown.

[17] SLOCCount Contributors. 2016. SLOCCount. https://dwheeler.com/sloccount/

[18] Ian Sommerville. 2015. Software engineering 10th Edition. ISBN-10 137035152
(2015), 18.

[19] Davide Spadini, Maurício Aniche, and Alberto Bacchelli. 2018. PyDriller: Python

framework for mining software repositories. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, Lake Buena Vista FL USA, 908–911.

https://doi.org/10.1145/3236024.3264598

https://doi.org/10.5281/zenodo.5760077
https://doi.org/10.5281/zenodo.5760077
https://docs.github.com/en/issues/planning-and-tracking-with-projects/viewing-insights-from-your-project/about-insights-for-projects
https://docs.github.com/en/issues/planning-and-tracking-with-projects/viewing-insights-from-your-project/about-insights-for-projects
https://docs.github.com/en/issues/planning-and-tracking-with-projects/viewing-insights-from-your-project/about-insights-for-projects
https://github.com/ossf/scorecard
https://github.com/ossf/scorecard
https://doi.org/10.1109/SANER.2015.7081864
https://doi.org/10.1109/ICSE.2013.6606588
https://doi.org/10.1109/eScience.2018.00036
https://docs.gitlab.com/ee/user/project/insights
https://docs.gitlab.com/ee/user/project/insights
https://www.youtube.com/watch?v=OMTfPsLa98I
https://www.youtube.com/watch?v=OMTfPsLa98I
https://goreportcard.com/
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.5281/zenodo.6587880
https://doi.org/10.1007/s10664-017-9512-6
https://www.npmjs.com/
https://npms.io/
https://dwheeler.com/sloccount/
https://doi.org/10.1145/3236024.3264598

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Architecture
	4 Metrics Implemented
	4.1 Direct Metrics
	4.2 Derived Metrics

	5 Demonstration
	6 Planned Studies
	7 Acknowledgments
	8 Conclusion
	References

