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TypoSmart: Detecting Active and Stealthy Typosquatting Threats
in Package Registries

Anonymous Author(s)

ABSTRACT
Typosquatting attacks, also known as package confusion attacks,
threaten software supply chains. Attackers make packages with
names that resemble legitimate ones, tricking engineers into in-
stalling malware. While prior work has developed defenses against
typosquatting in some software package registries, notably npm
and PyPI, gaps remain: addressing high false-positive rates; gener-
alizing to more software package ecosystems; and gaining insight
from real-world deployment.

In this work, we introduce TypoSmart, a solution designed to
address the challenges posed by typosquatting attacks. We begin
by conducting a novel analysis of typosquatting data to gain deeper
insights into attack patterns and engineering practices. Building on
state-of-the-art approaches, we extend support to six software pack-
age registries using embedding-based similarity search, achieving a
73%–91% improvement in speed. Additionally, our approach signifi-
cantly reduces 70.4% false-positive compared to prior work results.
TypoSmart is being used in production at our industry partner and
contributed to the removal of 3,658 typosquatting packages in one
month. We share lessons learned from the production deployment.
ACM Reference Format:
Anonymous Author(s). 2025. TypoSmart: Detecting Active and Stealthy
Typosquatting Threats in Package Registries. In . ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Software package registries (SPRs) have become indispensable
in modern development, providing open-source packages which
greatly reduce costs and accelerate product cycles [45, 61]. Open-
source packages are used by industry and governments [2, 49],
including in AI and safety-critical applications [18, 48]. Attackers
seek to disrupt or exploit the resulting supply chains by creating
packages with deceptive or look-alike names [10, 23, 39]. This prac-
tice is commonly called typosquatting or package confusion [20, 35].
Figure 1 shows the threat model.

Researchers have proposed many approaches to address package
typosquatting, including Levenshtein distance [59], lexical similar-
ity [35, 50], or imaging approach [44]. However, three gaps remain:
(1) high false positive rate, (2) limited coverage across SPRs, and
(3) limited insights from SPR perspectives. Prior work — triggering
alarms approximately every 200 to 1,000 package installations —
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Figure 1: Threat model depicting typical typosquatting attacks in-
volving active and stealth typosquatting threats.

falls short of customer expectations, and has limited coverage on
only three SPRs [50].

We present TypoSmart, the first scalable deployment of a novel
typosquatting detection system. Our approach addresses key limi-
tations by leveraging comprehensive package metadata to reduce
false-positive rates, integrating enhanced embedding-based name
comparisons to scale on production, and deployed to a production
environment. Additionally, we refined the traditional definition of
typosquatting — moving from merely identifying suspicious pack-
age names to incorporating both active and stealth attacks. This
approach improved the accuracy of identifying real threats and
redefined false-positive criteria, aligning them more closely with
practical concerns.

In empirical tests, our TypoSmart system improved 73%-91%
neighbor search speeds, and reduced false positives by 70.4% through
metadata-driven checks. By prioritizing true positives that practi-
tioners find valuable, our methodology improves the relevance and
reliability of detection outcomes. Additionally, this work presents 4
lessons we learned from production deployment from the perspec-
tive of SPRs, offering insights into optimal deployment strategies.
TypoSmart is being used in production at our industry partner, and
contributed to the removal of 3,658 typosquatting packages in one
month.

To summarize our contributions:

(1) Drawing from production deployment experience and analysis
of typosquatting-relevant practices, we refined the definition of
typosquatting to encompass both active and stealth typosquat-
ting threats.

1
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(2) We present TypoSmart, an embedding-based detection system,
extending state-of-the-art work to SPRs and substantially reduc-
ing the false positive rates.

(3) Our real-world deployment provides practical lessons for imple-
menting robust supply chain defenses from the perspective of
package registries.

2 BACKGROUND AND RELATEDWORK
Modern software development depends on ecosystems of third-
party libraries and frameworks that facilitate software reuse [61, 65].
We refer to these reusable software artifacts as software pack-
ages. These packages are distributed by software package registries
(SPRs) [43, 45]. Table 1 shows the SPRs for six popular ecosystems.
Together, these SPRs contain over 7 million software packages that
are used by organizations worldwide.

SPRs accelerate engineering practice but their use exposes appli-
cations to many software supply chain security attack vectors [11,
23, 37, 39, 64] The most common and longstanding supply chain
attack vector is called typosquatting, or package confusion. A recent
study indicates that, as of 2024, typosquatting campaigns continue
to target developers by exploiting hundreds of popular JavaScript
packages, with over 250 typosquatting packages published in to-
tal [27]. Previous research has also demonstrated that a single ty-
posquatting package can result in hundreds of user downloads [42].
Our goal is to detect such attacks. In preparation, we next describe
the current taxonomy of typosquatting attacks (§2.1) and then ex-
amine existing defenses (§2.2).

Table 1: Ecosystems examined in this study, highlighting their pri-
mary domains, naming conventions, and popularity metrics. Reg-
istry sizes are as of Jan. 2025. An example 1-level naming pattern is
PyPI’s requests module. An example hierarchical name is Hugging
Face’s google-bert/bert-base-uncased.

Registry (# pkgs) Domain Name Structure Pop. metric?

npm (5.1M) JavaScript Both Yes
PyPI (619K) Python 1-level Yes
RubyGems (212K) Ruby 1-level Yes
Maven (503K) Java Hierarchical External
Golang (175K) Go Hierarchical External
Hugging Face (1.1M) AI Models Hierarchical Yes

2.1 Typosquatting Attacks and Taxonomy
Typosquatting attacks on software packages are enabled by per-
missive package naming policies.1 In all major SPRs (e.g., those
of Table 1), if a name is not already registered, then an attacker
can claim it for himself. To carry out a typosquatting attack, an
adversary publishes a software package whose name closely resem-
bles that of a legitimate package. The attacker’s goal is to cause
engineers to accidentally rely on their package instead, allowing
the attacker to deliver malware to the developers or users of down-
stream software [23, 38]. Typosquatting occurs in the AI software
supply chain too — on the Hugging Face SPR, attackers publish pre-
trained models with names mimicking famous models to deceive
engineers into using harmful variants [17, 19, 40].

1We acknowledge that typosquatting plagues all IT endeavors (e.g., DNS [7, 54]
and Blocke [33]). We focus on software packages.

Table 2 summarizes the state-of-the-art taxonomy of typosquat-
ting attacks, based on Neupane et al. [35]. The variations in naming
structure in different SPRs also affect the nature of typosquatting
by SPR. In SPRs with 1-level names, typosquats look like the top
portion of the table, while in hierarchical SPRs the attacker has a
larger naming surface to exploit (bottom portion of table).

Table 2: Common typosquatting techniques with examples. The top
section presents the taxonomy proposed by Neupane et al. [35]. We
added two patterns (bottom, cf. §3.1), generalizing the prior taxon-
omy to SPRs with hierarchical names.

Technique Example Transformation
1-step Damerau-Levenshtein Dis-
tance

crypto→ crypt

Prefix/suffix augmentation dateutil→ python3-dateutil

Sequence reordering python-nmap→ nmap-python

Delimiter modification active-support→ activesupport

Grammatical substitution serialize→ serializes

Scope confusion @cicada/render→ cicada-render

Semantic substitution bz2file→ bzip

Asemantic substitution discord.js→ discord.app

Homophonic similarity uglify-js→ uglifi.js

Simplification pwdhash→ pwd

Alternate spelling colorama→ colourama

Homographic replacement django→ diango

Impersonation Squatting meta-llama/Llama-2-7b-chat-hf → face
book-llama/Llama-2-7b-chat-hf

Compound Squatting @typescript-eslint/eslint-plugin →
@typescript_eslinter/eslint

2.2 Defenses Against Typosquatting
Typosquat attacks can be mitigated at many points in the reuse
process, e.g., by scanning for malware in registries [58] or during
dependency installation [24] or by sandboxing dependencies at
runtime [4, 8, 57]. Since an ounce of prevention is worth a pound
of cure, many works have focused on detecting typosquats prior
to dependency installation, e.g., identifying possible typosquats
during the dependency selection process. We describe typosquat
defenses from academia (§2.2.1) and from industry (§2.2.2), and
then describe the weaknesses and knowledge gaps (§2.2.3).

2.2.1 Academic Defenses. Although there aremany academicworks
on software supply chain security [39], there have been relatively
few academic works that specifically target the detection of ty-
posquat attacks. Prior typosquatting detection has explored mul-
tiple areas, including DNS domains [21, 32], mobile apps [16],
blockchain [33], and container registry [25]. The earliest solution to
package typosquatting was Taylor et al.’s Spellbound which was
integrated into the installation pipeline to present npm users from
potential typosquatting attacks [50]. Vu et al.’s concurrent work
applied Levenshtein distance to identify PyPI package typosquat-
ting attacks [59]. Their scheme was based on lexical similarity —
they detected typosquats by identifying minor textual alterations
in package names. To detect more complex attacks, Neupane et al.
proposed Typomind, a system that employs 12 heuristic rules for
detecting typosquats [35]. Of particular note is their approach to
addressing the “semantic substitution” class of attacks (Table 2).
They used FastText embeddings [5] to encode elements of a package
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name into high-dimensional vectors. By analyzing cosine similarity
between these vectors, a wider range of typosquat techniques could
be detected.

2.2.2 Industry Defenses. One class of industry tools supports en-
gineers at package installation time. Socket defends against ty-
posquatting by providing real-time detection Stacklok’s approach
is to identify typosquatting by analyzing package names using Lev-
enshtein distance, evaluating repository and author activity metrics,
and assigning a risk score through their platforms [47]. Microsoft’s
OSSGadget provides a CLI tool to detect typosquats across multiple
ecosystems [31].

Some software package registries also seek to detect typosquat-
ting. npm uses Levenshtein-based detection to identify and block
package names that are deceptively similar to popular packages,
thereby preventing typosquats from entering the registry [36]. PyPI
has an impersonation policy, which prohibits deceptively similar
usernames, organization names, and project names, reducing the
risk of typosquatting and related attacks [41]. In addition, all major
SPRs remove malware (including typosquat packages) when they
become aware of it [9, 12, 13]. However, some typosquats are sub-
jective; in the absence of a clear malware signal, human analysts
remain necessary to triage reports.

2.2.3 Gap Analysis and Contributions. Our work addresses sev-
eral gaps across the existing knowledge described in sections 2.2.1
and 2.2.2.

(1) High false positive rate: Existing tools say that only ∼0.1%
of their reports were malware [35] because they do not have
a clear definition of typosquatting false-positive. What is the
real typosquatting false positive and how to reduce the rate
remains an open problem.

(2) Limited registry focus: So far, the major research papers
have focused on only 3 SPRs: npm, PyPI, and RubyGems [35,
51, 59]. As indicated by Table 1, there are many SPRs and these
SPRs vary in typosquat-relevant ways — e.g., how names are
constructed and whether popularity information is available.

(3) Limited insight from SPR perspective: Both academic de-
fenses and many industry tools are focused on supporting
the individual engineer with engineer-side tooling based on
limited local information. Such tooling is certainly useful, but
we believe it is a stopgap until SPRs or other ecosystem play-
ers can deploy a viable typosquat detection system at scale to
proactively prevent typosquat creation or automatically take
them down more quickly. False positives are particularly prob-
lematic for such a venture because inaccurate notifications
erode trust ecosystem-wide. We lack reports from production
deployments to understand what challenges arise.

We address these gaps as follows. First, we conduct a novel analy-
sis of typosquat true and false positives in order to improve accuracy
over prior work. Second, our work expands on prior work to con-
sider 6 registries, which (to the best of our knowledge) represent all
major typosquat-relevant variations across all public SPRs. Third,
we have deployed our system in collaboration with an industry
partner and share lessons learned.
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Figure 2: Frequency of released time before malware added to a
typosquat package. Over 10% of typosquats are stealthy.

3 EMPIRICAL STUDY OF TYPOSQUATS
In this section we report on several complementary investigations
into attacker behaviors and benign engineering behaviors. Our
findings allow us to refine the definition of typosquatting, extend
the state-of-the-art taxonomy, and learn legitimate behaviors that
lead to false positives.

3.1 Analysis of Attacker Practices
Although previous research has proposed various methods for de-
tecting typosquatting attacks, the issue persists across multiple
registries. We analyzed attacker practices and identified key short-
comings in prior work.

3.1.1 Stealthy Typosquats. We analyzed the versions of confirmed
typosquatting “true-positives”, defined as typosquatting attack pack-
ages that include malware. These data were collected and reported
by Neupane et al. [35]. We analyzed the number of days these mali-
cious packages were available before malware was injected. Due
to the lack of comprehensive package content (the SPR removed
the packages), we estimated the injection time based on the last
version updated before removal.

Figure 2 illustrates our findings on the release time before mal-
ware injection.Whilemost typosquatting attacks injectedmal-
ware within the first day of release, a notable proportion of
packages (∼14%) represent stealth attacks, lying dormant for a
period before deploying malware. The stealth typosquatting attack
strategy allows attackers to evade detection for extended periods,
increasing the likelihood of successful exploitation before the mali-
cious activity is discovered. Prior work on typosquatting did not
report this behavior nor take it into account in their system designs.

3.1.2 Extending the Taxonomy to New SPRs. We analyzed the exist-
ing taxonomy and real-world attack patterns observed in produc-
tion data by our industry partner. We found that in registries with
hierarchical naming conventions, two additional categories occur:

• Impersonation Squatting. Impersonating a legitimate main-
tainer or organization by registering a deceptively similar author
or groupId. For instance, meta-llama/Llama-2-7b-chat-hf vs.
facebook-llama/Llama-2-7b-chat-hf [40].
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• Compound Squatting.Making multiple coordinated edits to
the hierarchical name, such as altering both scope and delimiters
at once. For example, @typescript-eslint/eslint-plugin be-
coming @typescript_eslinter/eslint.

3.2 Analysis of Engineering Practices
Prior typosquatting detectors have high false positive rates. To
address this, we must knowwhy engineers benignly make packages
that resemble typosquats.

Method. To understand the causes of such package names, we
randomly sampled 665 packages from the original 640,482 false
positives reported by Neupane et al., which have suspicious package
names while do not include any malware. This sample size was
selected to obtain a confidence level of 99% with a margin of error
of 5% on the resulting distribution of causes.

To identify the engineering practices in the existing typosquat-
ting data, we began by having two researchers with expertise in
the software supply chain analyze 200 of these packages. They ana-
lyzed each package’s content andmetadata (READMEs,maintainers,
available source code, etc.). Each analyst independently proposed a
list of engineering practices based on this analysis (codebook) and
then they discussed this codebook together to reach agreement on
terms and definitions. To test valididty, they then independently
applied this codebook to the 200 packages and measured agreement
using Cohen’s Kappa [6]. The initial inter-rater reliability was 0.6
(substantial [29]). The researchers subsequently discussed to resolve
discrepancies and refine their analysis. Through discussion, they
reached consensus on measurable attributes that could indicate
malicious intent or the possibility of a stealthy attack.

Based on the high agreement in this process, one of these re-
searchers analyzed the remaining 465 packages, assisted by a tool
developed by both researchers.

Results. This analysis identified eight measurable attributes in-
dicative of malicious intent or stealthy attack potential. These at-
tributes include factors such as a distinct purpose, adversarial pack-
age naming, and the comprehensiveness of metadata, including
README files. Due to space limitations, we have placed the de-
tailed findings in Appendix A.

This manually labeled dataset was also used as the evaluation
dataset in §6. We will include the dataset in our artifact (§10).

3.3 Refined Typosquat Definition
Integrating these findings we obtain:

Definition: Typosquatting Threat

A typosquatting threat is the creation of a software pack-
age whose name mimics a popular, trusted resource, with
the intent of deceiving developers into installing code that
is actively malicious or may become so (stealth).

Under our definition, the current absence of malware does not
imply future innocence. In contrast, prior research on typosquat-
ting supposes that typosquat packages always contain malicious
code [35, 51].

Without being able to use malware signatures or CVEs to pin-
point active typosquat attacks, our inclusion of intent raises the
possibility of high false positive rates. Our analysis of false positives
from prior lexical analyses (§3.2) found usable signals to distinguish
benign engineering practices from likely-stealthy typosquats.

4 THREAT MODEL AND SYSTEM
REQUIREMENTS

Our goal is to tackle the challenges of high false-positive rates
and limited registry coverage while enhancing the ability to detect
stealthy typosquatting attempts. This section defines our system
and threat model (§4.1), and articulates our system requirements
(§4.2).

4.1 System and Threat Model
We describe the system we secure and the threats covered in this
work.

SystemModel:We focus on software package registries, includ-
ing registries hosting traditional software packages (e.g., NPM) and
pretrained AI models (e.g., Huggingface). These registries allow
users to publish and share software artifacts (traditional packages
and pretrained models) with other users, thereby facilitating soft-
ware reuse. The number of packages hosted in these registries, as
shown in Table 1, demonstrate their popularity across software
development communities.

Threat Model: Our threat model focuses on attackers who can
publish packages to software package registries and use the pub-
lished package to deliver malicious code to unsuspecting users and
applications. We include some threats and exclude others.

• In-scope: We consider attacks where packages with deceptively
similar names to legitimate packages are published in the soft-
ware package registry. The attacker may initially publish with
non-malicious content (stealthy) and later introduce malware
(active).
• Out-of-scope: We do not consider attackers that either directly

publish malicious packages with new names or compromise
existing legitimate packages. These attacks are mitigated by the
broader software supply chain security measures [39].

This threat model is substantially stronger than those of exist-
ing typosquat detection techniques [35, 50, 59]. They only consider
typosquat packages with malicious code (i.e., active threats, not
stealthy ones). Figure 2 demonstrates stealthy threats in the wild,
with malicious code introduced months after the original package
is published.

4.2 System Requirements
Effective detection systems for package registries must meet both
security and operational goals. These requirements ensure robust
identification of malicious intent, compatibility with diverse ecosys-
tems, and practical performance for real-world deployment. A
production-ready system must address the following key require-
ments:

Req1: High Accuracy and Low False-Positive Rate. A typosquat
detection system must achieve high accuracy, effectively capturing

4
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true positives while maintaining a low false-negative rate Addi-
tionally, to avoid “alert fatigue”[3] and protect the reputation of
influential open-source contributors, the system must minimize
unnecessary alerts, aiming for a false-positive rate of only a few
percent. Packages with similar names, such as legitimate forks[62],
should not be flagged unless they exhibit clear signs of malicious
intent.

Req2: Efficient and Timely Detection. The system must be able to
handle large registries, ensuring scalability while providing low-
latency, on-demand checks for real-time feedback.

Req3: Compatibility Across Ecosystems. The system must provide
support for diverse naming schemes, encompassing both one-level
and hierarchical naming conventions, along with comprehensive
metadata integration.

Req4: Frequent Metadata Updates. The system must regularly in-
gest data from sources like package registries, version histories, and
domain checks to maintain up-to-date threat intelligence. This en-
sures developers are promptly informed about suspicious packages
released since the last scan, independent of popularity metrics.

Req5: High Recall of Stealth Typosquatting Attack. The system
must identify both active and stealth typosquatting packages.

5 TYPOSMART DESIGN AND
IMPLEMENTATION

Existing methods often rely on simplistic criteria, such as the ab-
sence of current malware activity or name similarity to legitimate
packages, to classify packages as benign or potential typosquats
(§2.2). These approaches are prone to ambiguity and result in high
false-positive rates, failing to account for the range of intents behind
suspicious package names [35, 51].

We introduce TypoSmart, a comprehensive typosquatting detec-
tion system designed to reduce false positives while prioritizing
the detection of malicious intent. Our system integrates embedding-
driven name analysis, hierarchical naming checks, and metadata-
based verification to enhance threat detection andmitigation. TypoSmart
is specifically designed for backend use in package registries or sim-
ilar platforms, prioritizing accuracy over low latency to ensure
robust and reliable detection.

Our system proactively addresses existing shortcomings by an-
alyzing suspicious package names and leveraging LLMs to detect
the existence of malicious intent, thereby flagging harmful naming
patterns before they can cause damage.

Figure 3 presents our typosquatting detection pipeline, including
five steps:

(1) Maintaining an up-to-date metadata database, ensuring real-time
awareness of new and evolving packages (Req4).

(2) Generating and storing fine-tuned embeddings to capture domain-
specific name similarities essential for detecting malicious intent
(Req1, Req3).

(3) Integrating popularity metrics (where available) so that the sys-
tem focuses on high-value targets without excluding lower-
profile threats (Req3).

(4) Running ML-based package confusion searches, using approxi-
mate nearest neighbors (ANN) and quantization to scale effi-
ciently (Req2).

(5) Verifying potentially legitimate packages throughmetadata heuris-
tics, mitigating false positives and maintaining developer trust
(Req1, Req5).
Each step builds upon the artifacts of the previous ones In the

remainder of this section, we first detail the rationale and imple-
mentation details of each step (§5.1 – §5.6), as well as the system
limitation (§7.2).

5.1 Step 1○: Package Metadata Database
5.1.1 Rationale (Req4). Frequent metadata ingestion is essential for
early threat detection and aligns with Req4, which mandates a
reliable feed of newly published packages.

5.1.2 Approach. We employ a commercially maintained platform
from a software supply chain security company, which consolidates
metadata from npm, PyPI, RubyGems, Maven, Golang, and Hug-
ging Face. This database contains package names, version histories,
commit logs, license info, and maintainer records, all updated on a
near-daily basis. By ingesting these details, we mitigate stale data
concerns and ensure our pipeline quickly analyzes newly intro-
duced packages. This step forms the basis for all subsequent steps
in the system.

5.2 Step 2○: Package Name Embedding Database
Creation

5.2.1 Rationale (Req1, Req3). Detecting maliciously similar names
requires accurately capturing subtle lexical variations. Traditional
Levenshtein edit distance methods often fail to account for domain-
specific semantic nuances (e.g., meta-llama vs. facebook-llama),
while generic embedding models can introduce inaccuracies for
short names, resulting in higher false-positive or false-negative
rates. Robust, fine-tuned embeddings address these shortcomings
by providing enhanced semantic sensitivity, reducing erroneous
alerts (Req1). Moreover, this embedding approach is also generic
and unified to support various naming convention of SPRs (Req3).

5.2.2 Approach. An embedding fine-tuned on real package names
enhances semantic sensitivity, enabling the detection of adversarial
or suspicious names. This capability is integral to assessing the
risk associated with a package and serves as a cornerstone of our
intent-centric approach.

We build upon FastText [5], starting with the pre-trained model
pre-trained on cc.en.300.bin, and fine-tune it using a list of all
(totally ∼9.1 billion) package names extracted from the metadata
database in Nov 2024 (§5.1). By fine-tuning, our version can capture:
• Domain-Specific Subwords: Frequent domain specific terms

in package names are better captured.
• Hierarchical Structures: Splitting names inMaven (groupId:artifactId)

or Hugging Face (author/model) to create multiple embeddings
per package.

We then use the fine-tuned embedding model to create an em-
bedding vector database utilizing the vector format provided by
pgvector due to its efficient vector operations for databases [1]. The
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Figure 3: Overview of our typosquatting detection pipeline. The pipeline includes five primary steps, each labeled with a blue circled number.
Part of Steps 2 and All Step 3 are also pursued in prior work [35, 50]. In Step 2, we employed an embedding-similarity-based approach, which
differs from conventional methods. Additionally, we observed that incorporating Steps 4 and 5 significantly enhances system accuracy. The red
circles indicate the evaluation questions (EQs).

complete embedding database occupies 24 GB, with each embed-
ding vector corresponding to a single package name (or its author
name and package identifier). This setup not only facilitates
rapid query-based lookups but also supports subsequent steps in
package neighbor searching. Visualization of our embedding model
is available in Appendix B.1.

5.3 Step 3○: Integrating Popularity Signals
5.3.1 Rationale (Req3). Including popularity signals is crucial
because attackers often target widely used libraries or models to
maximize their impact. Building on insights from prior work [35,
51], identifying packages with high download counts or strong
community engagement allows us to concentrate detection efforts
where they are most needed, minimizing overhead and reducing
alert fatigue from infrequently used packages.

5.3.2 Approach. Building on prior work, we prioritize packages
based on popularity, treating widely-used ones as more likely to be
legitimate, while still scrutinizing all packages for signs of stealth
typosquatting attacks to balance resource efficiency and detection
accuracy.

For registries like npm, PyPI, RubyGems, andHugging Face—which
offer weekly or monthly download counts. We mark the top pack-
ages as legitimate packages. Prior works [35, 50] also adopt this
strategy, using popularity as a gating mechanism to identify prime
attack targets.

Maven and Golang lack consistent download metrics, prompt-
ing us to integrate external data sources such as ecosyste.ms,
which estimate popularity using indicators like stargazers, forks,
dependent repositories, and Docker pulls [34]. While the result-
ing composite average_ranking metric is not without limitations,
it effectively identifies libraries that are frequently referenced or
heavily relied upon.

To address the size of each ecosystem and satisfy Req3, we made
the following design decision: For a given input package, we cate-
gorize packages into two groups: a popular list and an unpopular
list. If the package belongs to the popular list, we compare it only
with significantly more popular packages — those with download
rates at least 10 times higher (for registries with download metrics)
or ranking scores at least twice as high (for registries with relative

popularity rankings). If the package is flagged as suspicious, it is
removed from the popular list, which is cached in memory for effi-
cient processing. For packages in the unpopular list, we compare
them against all packages in the popular list.

5.4 Step 4○: ML-Based Package Confusion
Search

5.4.1 Rationale (Req2). Despite the use of robust embeddings
(§5.2), scanning entire ecosystems for name-based threats remains
computationally intensive. A scalable strategy is essential to iden-
tify suspicious package similarities across millions of entries in
near-real-time (Req2). Moreover, hierarchical naming conventions
(e.g., groupId:artifactId in Maven) add complexity, as attackers
may target authorship (i.e., author squatting) rather than solely
manipulating package names. Thus, the solution must achieve high
recall while maintaining efficiency and minimizing false positives,
ensuring developers are not overwhelmed with excessive alerts
(Req2).

5.4.2 Approach.

Package Name Similarity Search. To efficiently detect suspiciously
similar names, we employ theApproximate Nearest Neighbors (ANN)
method, utilizing the HNSW index [28] in PostgreSQL. We selected
HNSWover IVFFlat due to its superior benchmarking results, which
demonstrate faster search speeds and negligible changes to vec-
tors [52]. The HNSW index partitions the embedding space into
multiple clusters, enabling us to focus distance computations on
a smaller subset of candidate packages, rather than exhaustively
comparing all possible pairs.

Data-Driven Optimization. We deployed an initial version of
our neighbor search algorithm to production for evaluation. Based
on empirical data, we identified opportunities to enhance its per-
formance. To improve accuracy across ecosystems, we tailored
the neighbor search query. For example, in Maven, the artifact
_id, and in Golang, the domain name, are lengthy and reduce the
effectiveness of embedding similarity. To address this, we relied
exclusively on edit distance for author names. Additionally, within
our threat model, we determined that changes to both identifiers
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in Maven, Golang, and Hugging Face were unlikely to significantly
confuse users. Consequently, we excluded these from our query.

Quantization for Performance. While ANN indexing accelerates
queries, the high dimensionality of fine-tuned FastText vectors can
still impose significant computational and storage demands. To
address this, we applied the quantization technique to compress
model weights by reducing precision, and maintaining high-quality
embeddings while reducing model size. We then regenerate and
store all package name vectors using the quantized model in Post-
greSQL, enhancing both batch and real-time search performance
while contributing to Req3 by lowering compute costs.

HuggingFace challenges:semantic difference vs. typos

5.5 Step 5○: Metadata Verification
Analyze these metrics using data from typomind to specify the
threshold for each. Despite promising performance in name-based
detection, purely string-oriented methods often misclassify harm-
less or beneficial packages as typosquats. To mitigate these false
alarms, we developed ametadata-driven verification procedure
that filters out legitimate packages based on readily observable
heuristics (e.g., active development, overlap in maintainers). This
section details our preliminary analysis, the rules derived from it,
and how we evaluate the final false-positive (FP) verifier.

5.5.1 Rationale (Req1, Req5). Although name-based detection
(Steps 2–4) successfully flags suspiciously similar packages, purely
string-oriented methods often over-trigger on benign forks, relo-
cated projects, or rebranded namespaces. This can overload devel-
opers with alerts, undermining trust in the system (Req1, which
calls for manageable false-positive rates). To mitigate these spurious
detections, we introduce a metadata-driven verification procedure
that check each flagged package for clear signs of legitimacy (e.g.,
active development, overlapping maintainers) and classify them
into different categories (Req5).

5.5.2 Approach. Our analysis on the false-positive data (§3.2) sug-
gested that purely name-based detection can flag numerous le-
gitimate packages, from brand extensions to harmless forks. To
address these issues, we iteratively developed nine rules that utilize
metadata signals (e.g., version history, maintainers) to distinguish
genuinely malicious typosquats from benign look-alikes.

Table 3 provides a summary of the goals and implementation
details for each rule. Once our name-based detector flags a pack-
age as suspicious, we retrieve its metadata and sequentially apply
R1–R8, stopping as soon as a rule determines the package to be
legitimate. Furthermore, during the deployment of our system in
production, we identified the need for two additional rules (R9, R10)
based on observed patterns. These new rules were subsequently
integrated into the system, along with their corresponding metrics.
Implementation detail of our verifier can be found in Appendix B.3.

5.6 Step 6○: Intervention and Alerting
To mitigate typosquatting attacks, our system issues notifications
to relevant stakeholders whenever it detects suspicious packages
across different package registries. The goal is to prompt closer
scrutiny of packages that exhibit potentially deceptive naming,

to determine whether they constitute genuine attacks, and to as-
sess any malicious behavior within them. We envision this alert
mechanism as an additional layer of defense, complementing other
software-package metrics such as supply chain security, quality,
maintenance, vulnerability management, and licensing compliance.

5.7 Implementation
Our system is implemented in Python, with embeddings stored
in PostgreSQL. Quantization and embedding generation rely on
a modified FastText pipeline (§5.2). TypoSmart has over 3K LOC,
primarily comprising ∼1K LOC for embedding creation, ∼500 LOC
for popularity check, ∼1K LOC for neighbor search, ∼300 LOC for
metadata verification, and ∼100 LOC for alerting.

6 EVALUATION
To evaluate TypoSmart, we pose five Evaluation Questions (EQs) to
assess its performance at the component level (EQ1–EQ3) and the
system level (EQ4–EQ5). At the component level, we measure the
effectiveness of novel mechanisms introduced in TypoSmart. At
the system level, we evaluate its integrated functionality, scalability,
and ability to detect real-world typosquatting threats. Additionally,
we compare our approach to SOTA methods to benchmark its
effectiveness. An overview of the evaluation process is illustrated
in Figure 3.

Component-level. We assess how individual components con-
tribute effectively to the overall system.
• EQ1: Performance of Embedding Model.What is the accu-

racy and efficiency of our embedding model?
• EQ2: Neighbor Search Accuracy.How effective is the neighbor

search approach? (§5.4)
• EQ3: Metadata Verification Accuracy. How much does the

FP verifier (§5.5) reduce false positive rates?

System-level. We examine the performance of the full TypoSmart
system and compare to other approaches.
• EQ4: Discovery of New Typosquats. Can TypoSmart identify

previously unknown typosquatting threats?
• EQ5: SystemEfficiency and Scalability.Does TypoSmart have

practical throughput and latency for deployment? (Throughput is
critical for full registry scans, while low latency ensures viability
for on-demand API queries.)
All experiments run on a server with 36 CPU cores (Intel Xeon

W-2295 @ 3.00GHz) and 188 GB of RAM. Notably, the training and
fine-tuning of FastText models do not require GPUs.

6.1 Baseline and Evaluation Datasets
State-of-the-Art Baselines. We compare our system to the Leven-

shtein distance approach, used in [59], and Typomind [35] which
is the only embedding-based approach from existing literature.

Evaluation Datasets. We evaluate our approach primarily us-
ing the dataset from [35] because it summarized all confirmed
typosquatting true positives, while include many suspicious pack-
ages that does not include malware. This dataset includes 1,239
confirmed typosquats labeled typosquatting packages from npm,
PyPI, and RubyGems.
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Table 3: Overview of the 10 metadata-based verification rules. Each rule includes a description of its purpose and the specific implementation
steps taken to verify flagged packages. The final two rules (R9 and R10) were added as part of our refinement process based on further observed
false-positive patterns after we deployed our system in production.

Rule Description Implementation

R1: Intentional Naming Identify brand-related or deliberately extended names, such as
express-plus, that suggest a legitimate project rather than a ma-
licious clone.

Compare flagged package names to legitimate ones, searching for suffixes like -plus, -extra,
or -utils. Presence of these terms strongly suggests legitimate extensions.

R2: Distinct Purpose Distinguish packages with different functionalities, even if names are
superficially similar (e.g., lodash-utils vs. lodash).

Extract package descriptions and calculate semantic similarity using TF-IDF cosine scores. A
score below 0.5 indicates distinct purposes, reducing suspicion of deception.

R3: Fork Identification Detect benign forks sharing near-identical code or metadata with a
popular package.

Compare README files, version histories, and file structures for high overlap. Similarities
without malicious edits suggest harmless forks.

R4: Active Development/Maintained Exclude packages that are frequently updated or actively maintained
by multiple contributors, as these are less likely to be malicious place-
holders.

Retrieve metadata for the last update, commit history, and version count. Classify packages
with recent updates (e.g., within 30 days) or more than five versions as legitimate.

R5: Comprehensive Metadata Identify packages missing critical metadata elements, such as licenses,
maintainers, or homepage URLs, which are typical of legitimate
projects.

Check for the presence of licenses, contact details, and repository links. Flag packages missing
two or more of these elements as potential typosquats.

R6: Overlapped Maintainers Distinguish legitimate extensions or rebrands by verifying if the
flagged package shares maintainers with the legitimate one.

Match maintainer identifiers (e.g., email, GitHub handle) between flagged and legitimate
packages. Overlapping maintainers suggest legitimate intent.

R7: Adversarial Package Name Filter out name pairs with significant length differences, as these often
indicate unrelated projects rather than covert mimicry.

Compare string lengths of flagged and legitimate package names. A difference exceeding 30%
indicates likely unrelated naming.

R8: Well-known Maintainers Trust packages maintained by reputable and recognized authors or
organizations.

Leverage knowledge in LLM training data to identify if a maintainer is well-known in the
community.

R9: Package Relocation Account for legitimate package relocations, common in hierarchical
registries like Maven.

Parse metadata files (pom.xml) for <relocation> tags or analogous fields. Identify and ignore
renamed or migrated projects.

R10: Organization Allowed List Prevent false positives by excluding packages published by trusted or
verified organizations.

Maintain an allowedlist of approved organizations. If a flagged package is published under an
allowed organization (e.g., @oxc-parser/binding-darwin-arm64), it should be considered
legitimate, comparing to binding-darwin-arm64.

6.2 EQ1: Perf. of Embedding Model
In this evaluation question, we measured both the effectiveness and
efficiency of our embedding model.

6.2.1 Effectiveness.

Method. We evaluate the effectiveness of embedding-based simi-
larity detection by comparing three approaches:

(1) Levenshtein-Distance, calculates the minimum number of single-
character edits required to change one package name into an-
other.

(2) Pre-trained FastText [5] (cc.en.300.bin), used in the SOTA
work Typomind [35], employs the general-purpose embedding
model cc.en.300.bin [5] to capture semantic relationships.

(3) Fine-tuned FastText (Ours), which we have adapted using a cor-
pus specifically composed of package names to better capture
domain-specific similarities.

To systematically compare these methods, we construct a bal-
anced test set consisting of both positive and negative pairs, with
each category containing 1,239 data points.

• Positive Pairs: These are derived directly from the Typomind
Ground-Truth dataset [35], which includes labeled typosquatting
packages across npm, PyPI, and RubyGems. Each positive pair
consists of a known typosquat and its corresponding legitimate
package.

• Negative Pairs: Created by randomly pairing unrelated package
names from registries, ensuring low similarity scores across all
tested methods. These pairs are guaranteed not to represent
typosquatting relationships.

For each approach, we applied a predefined similarity threshold
to classify package pairs as potential typosquats. The threshold was
selected via a grid search to optimize Precision and Recall, ensuring
effective identification of true typosquats. Pairs with similarity
scores above the threshold were classified as positive, while those

below were classified as negative. False positives were subsequently
filtered using our false-positive verification process in Step 5○.

We compute Precision, Recall, and F1 scores for each approach
to assess their performance:
• Precision: The proportion of correctly identified typosquats out

of all flagged pairs.
• Recall: The proportion of actual typosquats that were correctly

identified.
• F1 Score: The mean of Precision and Recall, providing a balanced

performance metric.

Result. Table 4 presents the results comparing our fine-tuned
model with baseline approaches. The table shows that the accuracy
of the quantized and original versions of our fine-tuned model is
nearly identical, indicating minimal loss in performance from quan-
tization. Additionally, the overall F1 score of the fine-tuned model is
approximately 1% higher than the pre-trained model, with a notable
2-3% improvement in recall for positive pairs. This improvement in
recall is particularly critical for detecting typosquatting attacks, as
correctly identifying all positive pairs is essential for comprehen-
sive threat mitigation. At the same time, our approach maintains a
relatively high accuracy for negative pairs.

6.2.2 Efficiency.

Method. To assess the efficiency of embedding database creation,
we evaluated three quantized versions of our fine-tuned models. We
evaluated the embedding database creation efficiency by measuring
the throughput, latency, and overall overhead associated.

Result. Our results shows that quantized models substantially
increase throughput while decreasing latency. Specifically, both
float16 and int8 quantization methods enhance throughput by
approximately 5× and reduce latency by around 10× compared
to the float32 baseline. However, the performance difference be-
tween float16 and int8 is minimal, likely due to the additional
quantization and processing steps involved.
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Table 4: Performance of embedding models. We selected the fine-tuned model with a threshold of 0.9 to achieve high F1 scores for positive
pairs and relatively high F1 scores for negative pairs. Quantization slightly improves F1 scores because the false positive rate goes up a bit
while the false negative rate goes down more substantially.

Model Quantization Threshold Positive Pairs Negative Pairs Overall Score
Precision Recall F1 Score Precision Recall F1 Score

Edit Distance N/A 4 1.00 0.80 0.89 1.00 1.00 1.00 0.94
Pretrained float32 0.6 1.00 0.85 0.92 1.00 0.98 0.99 0.96
Pretrained float16 0.6 1.00 0.85 0.92 1.00 0.98 0.99 0.96
Pretrained int8 0.6 1.00 0.85 0.92 1.00 0.98 0.99 0.95
Fine-Tuned float32 0.9 1.00 0.90 0.95 1.00 0.96 0.98 0.96
Fine-Tuned float16 0.9 1.00 0.90 0.95 1.00 0.96 0.98 0.96
Fine-Tuned int8 0.9 1.00 0.88 0.94 1.00 0.96 0.98 0.96
Hybrid N/A 0.5 1.00 0.91 0.95 1.00 0.91 0.95 0.95

Overall, the efficiency of quantized models indicates that our
embedding models achieve strong performance while optimizing re-
source usage. Additionally, the implementation of HNSW indexing
introduces minimal overhead, with each table requiring less than 10
seconds to process. This further enhances overall system efficiency.
A detailed results table is available in Table 7 (Appendix B.2).

6.3 EQ2: Neighbor Search Accuracy
Methods. Using the results from EQ1, we determined a threshold

of 0.93 through grid search, achieving an optimal balance between
precision and recall. To evaluate neighbor search performance, we
analyzed suspicious packages identified by typomind and additional
data provided by our ry partner.

Results. Figure 4 illustrates the ROC and accuracy curves for
our fine-tuned model. Our approach successfully captured all ty-
posquatting cases previously identified by SOTA methods. The
neighbor search algorithm demonstrated the ability to detect 99%
of real typosquatting attacks flagged by prior research.

Deployment data revealed that the algorithm effectively identi-
fied advanced threats, including compound squatting and imper-
sonation squatting, across platforms such as Maven, Golang, and
Hugging Face. For example, our system detected a compound squat-
ting attack on @typescripyt-eslint/eslint-plugin, where the
attacker used both a similar namespace and package identifier
(@typescript_eslinter/eslint) to mislead users. We found that
prior tools were unable to identify this type of sophisticated at-
tack. Additionally, we successfully flagged impersonation squatting
attacks targeting hierarchical package names in npm. While no
suspicious packages were identified in Golang, Maven, or Hugging
Face due to the limited sample size in these registries, we are confi-
dent in the system’s capability to detect such threats. Notably, it can
flag the reported impersonation squatting attacks for Hugging Face
from [40], which prior work failed to identify. These findings high-
light that our approach achieves SOTA performance in neighbor
search accuracy.

6.4 EQ3: Metadata Verification Accuracy
Method. Starting with the raw embedding output (i.e., packages

flagged for name-based suspicion), we apply the nine metadata
checks described in §5.5. We measure false positive rates (FPR) on
the manually labeled data, i.e., 665 flagged packages verified in §3.2.

Result. Among the 665 false-positive (i.e., suspicious typosquat-
ting package without malware injected), there are 23 packages
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Figure 4: Performance Metrics of the Fine-Tuned Model: (a) Thresh-
old Accuracy and (b) ROC Curve.

unavailable. So among the rest 642 packages, our metadata verifica-
tion step was able to correctly classify 425 as false-positive, i.e., we
reduced the false-positive rate from 75.4% to 5%.

These results confirm that supplementary heuristics beyond raw
name similarity reduce false positives while retaining high recall
for genuinely malicious typosquats. For instance, overlapping main-
tainer checks (R6) and explicit relocation detection (R9) proved
especially effective in ecosystems like Maven, where hierarchical
naming changes are common. Ultimately, this metadata-driven fil-
tering step (Step 4 in our pipeline) aligns our detection approach
with the realities of open-source development and AI model pub-
lication, ensuring minimal “false alarms” (Req3) without missing
critical threats.

6.5 EQ4: Discovery of New Typosquats
Method. To evaluate the effectiveness of our typosquatting detec-

tion system, we deployed TypoSmart in a production environment
for one month. During this period, flagged packages were ana-
lyzed using a malware scanner and reviewed by threat analysts for
detailed insights.

Result. Figure 5 provides a detailed breakdown of typosquatting
packages detected by TypoSmart which were flagged and removed
from registries in Dec, 2024.

Out of 3,658 suspicious package names flagged by our system,
the majority (3,075, 86.1%) contained malware. An additional 298
packages (8.4%) were classified as anomalies due to the presence
of dangerous functionality (e.g., eval, fs) that did not appropri-
ately handle user input or exhibited other risky coding practices. A
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Figure 5: Production data from npm and PyPI showing removed
packages flagged by our system within the past month.

smaller subset, 119 packages (3.4%), was categorized as “vulnerabil-
ities”, where the code included multiple dangerous functionalities
and mishandled user input in ways that could harm users’ sys-
tems, such as deleting files outside the tmp folder. Furthermore, 27
packages were removed from the SPRs by their authors or maintain-
ers before further analysis, leaving insufficient data to assess their
content. In addition, we identified 15 stealth typosquatting threats
(0.4%), which did not contain overtly malicious content but were
flagged due to their deceptive intent. These packages impersonated
legitimate ones to mislead users. Other less common categories,
such as spyware-only attacks, were also observed in the dataset.

In addition to these packages that include

Table 5: Typosquats uncovered in randomly selected 5000 packages
from each SPR.

Registry Suspicious Benign
npm 67 4933
PyPI 29 4971
RubyGem 239 4761
Maven 0 10000
Golang 0 10000
Hugging Face 0 10000

6.6 EQ5: System Efficiency and Scalability
Method. We evaluated the end-to-end system efficiency by mea-

suring the average latency and throughput across 5,000 package
inputs per ecosystem. The latency metrics include similarity com-
parison, neighbor search, false-positive (FP) verification, and overall
system latency. Throughput was calculated as the number of pack-
ages processed per second.

Result. Table 6 summarizes the performance metrics of our sys-
tem across various registries, demonstrating acceptable latency
with variations based on registry size and complexity. For example,
npm shows a latency of 14.17 seconds per package, while PyPI
achieves a faster latency of 7.22 seconds. RubyGems, with its larger
package set and more complex naming structures, has a higher
latency of 46.94 seconds per package. Our system also effectively
supports previously unaddressed registries like Maven, Golang, and

Hugging Face, which exhibit latencies of 5.98, 5.04, and 16.05 sec-
onds per package, respectively. Importantly, it achieves substantial
speed improvements in the neighbor search step, outperforming
prior work by 73%–91% across all registries.

Although our system prioritizes accuracy over latency, it main-
tains performance levels suitable for production deployment. The
relatively low throughput is primarily due to reliance on the Ope-
nAI API and GPT-4o for metadata verification, which introduces
significant inference times (e.g., npm and PyPI require 11.3 and 6.81
seconds per package, respectively, for false-positive verification).
However, the inclusion of LLMs greatly enhances detection accu-
racy, making this trade-off worthwhile. The additional latency from
sorting and LLM verification is critical to reducing false positives
and ensuring high detection accuracy. Furthermore, the system
scales effectively, efficiently managing large registries like npm
and PyPI. Future work could explore optimizing LLM inference or
incorporating smaller, more efficient models to boost throughput
without compromising accuracy.

7 DISCUSSION
7.1 Lessons Learned from Production

Lesson 1: TypoSmart prevents real typosquats. Over the past two
months, we deployed the system in our industry partner’s pro-
duction environment, during which we identified and confirmed
2,153 threats, with 56,025 additional threats under review. For the
typosquatting threats we identified on npm, PyPI, and Golang, we
ran a commercial malware scanner on those packages. This results
in the removal of 3,658 packages within one month.

Lesson 2: False Positives Harm Our Customers. Table 3 represents
the most recent metadata verification rules. In deployment, we
found additional cases where the package has a very similar name
and the README of their package was missing which made our
system classify it as suspicious stealth attack, while the package is
actually legitimate. That package, specifically served as transitive
package and therefore the package owner did not write a README.
In such case, from a registry perspective, a false-positive will harm
the reputation of the customer in the community if the package
is flagged as suspicious. To avoid this case, we added an allowed
list so that if the package is from our customers, then it should be
considered as legitimate.

Lesson 3: Ontology Matters. Despite these improvements, we
have identified ontological limitations in our current approach to
categorizing typosquatting threats. Specifically, the typosquatting
categories outlined in Table 2 do not provide sufficient meaningful-
ness for end-users in the alarming system (§5.6). To address this,
we propose refining our categorization system to consider the mali-
cious content and intent behind each package, including a risk-level
classification. This would allow a more nuanced assessment of each
threat.

Lesson 4: We need more sophisticated analysis to discern intent. To
bolster a more straightforward blocking policy, there is still a need
to integrate additional tools and algorithms. One such tool is a differ-
ential scanner, which compares packages to identify discrepancies
that may indicate malicious alterations. Additionally, implementing
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Table 6: System Latency and Throughput Metrics Across Registries: This comparison includes similarity latency, overall neighbor search
latency, false-positive verification latency, and system latency. All metrics are evaluated using identical inputs, ensuring fair comparability
across systems. Each latency value represents the time taken to compare a given unpopular package with all popular packages in the registry.
Prior work does not support Maven, Golang, and Hugging Face because their names are too long to process [35]. The FP verification for Maven,
Golang, and Hugging Face was manually triggered (no suspicious neighbors identified).

Registry # Pop. Pkgs. Typomind Name Comparison Latency (s/pkg) Our Neighbor Search Latency (s/pkg) FP Verification Latency (s/pkg) System Latency (s/pkg)
npm 36,333 10.83 2.87 11.3 14.17
PyPI 9,525 4.45 0.41 6.67 8.94
RubyGems 60,695 34.62 1.37 15.73 23.98
Maven 27,831 N/A 5.98 (8.08) (14.06)
Golang 20,713 N/A 5.04 (12.04) (17.08)
Hugging Face 13,252 N/A 1.23 (14.82) (16.05)

a grey-list system will enable us to place suspicious packages with
low-risk levels into a monitored category. These grey-listed pack-
ages will undergo continuous surveillance of their behavior and
content, ensuring that any emerging threats are promptly detected
and addressed. By adopting these strategies, we aim to enhance
the robustness and responsiveness of our typosquatting defense
mechanisms.

7.2 Limitations and Security Analysis
This section discusses our system limitations and how attackers
might bypass TypoSmart.

Gaming Metrics. Our system relies on software metrics to gauge
the likelihood that a package is a typosquat. These metrics might
be gamed. There has been little formal study of the feasibility of
gaming these metrics, but recent work suggests both the possibility
and some real-world examples [15].

Limitations in Neighbor Search. One significant limitation of
TypoSmart lies in its ability to handle short names or acronyms.
FastText, the underlying embedding model, struggles with short
words (e.g., xml vs. yml, with a similarity score of 0.7). The model’s
reliance on character n-grams often fails to capture subtle similari-
ties effectively in such cases, providing an avenue for attackers to
exploit short package names. Although FastText emphasizes sub-
word representations to improve embeddings, this focus reduces its
ability to account for visual ambiguity or phonetic similarity (e.g.,
google and g00gle appear less similar in the embedding space).
To address this, we implemented a list of potential substitutions
to identify cases of visual or phonetic ambiguity. However, this
approach introduces additional computational overhead, slowing
down the system. To further enhance detection accuracy, we com-
bine embedding similarity with Levenshtein distance. While this
hybrid approach improves neighbor search for short names, it in-
creases the computational cost and still does not fully resolve the
limitations in representation. Recent research demonstrates the po-
tential of AI tools to generate sound-based squatting attacks [55, 56],
further exacerbating threats to the software supply chain.

BypassingMetadata Verification. Our reliance onOpenAI’s GPT-4o
API introduces obvious correctness issues (hallucination). It also
entails security risks, as these models are vulnerable to jailbreaking
attacks [63]. Adversaries could exploit this by using techniques
like prompt injection or model hijacking [26, 66] to manipulate
the model’s responses. For example, attackers might craft prompts

or metadata to trick the model into classifying a malicious pack-
age as legitimate, such as misrepresenting a malicious username
as belonging to a trusted maintainer or aligning fake functional-
ity with that of a legitimate package. Since the LLM is integral to
verifying maintainers and functionality, such attacks could compro-
mise the system’s defenses and allow malicious packages to bypass
detection.

7.3 Future Directions
Addressing Other Squatting Attacks: Our study focused on ty-

posquatting on package names, but other constructs within SPRs
and ecosystems are also viable targets. One example is command
squatting, where malicious packages mimic command-line argu-
ments (e.g., npm i help vs. npm i −−help). While creating static
command lists for each registry would offer a temporary solution,
maintaining them would be complex in these decentralized ecosys-
tems.

Enhancing Representations for Typosquatting Detection: Improv-
ing the representation of typosquats is crucial for more robust
detection. While FastText captures semantic similarity through
subword embeddings, it struggles with typographical variations,
particularly for short words or acronyms. Fine-tuning FastText or
training a more efficient model on domain-specific corpora includ-
ing both correct and misspelled terms can address these limitations.
Augmenting training data with synthetic typos and incorporating
typo normalization or correction techniques before embedding gen-
eration can significantly reduce errors. Advanced models, such as
transformer-based architectures fine-tuned with contrastive learn-
ing on typo-specific datasets, present a promising alternative for
enhancing detection accuracy and reliability. This approach has
proven effective in combating domain typosquatting, but no re-
search has been conducted targeting package typosquatting [22].
One challenge is the limited availability of data for verifying pack-
age squatting cases. LLMs might help here [53].

Mitigating LLM Hallucination in Code Generation. The increasing
use of LLMs for code generation has introduced new challenges,
as these models often hallucinate package names or generate com-
mands for nonexistent or maliciously similar packages [46]. These
hallucinations pose serious threats to the security of the software
supply chain [53, 60]. Addressing this issue requires implement-
ing typo or hallucination correction mechanisms in LLM-based
package recommenders. Verifying package legitimacy, detecting
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typos, and integrating contextual checks can prevent the propaga-
tion of incorrect package names, reducing the risks associated with
hallucinations.

Meta-Learning for Malicious Package Detection. Meta-learning
approaches offer significant potential for improving malicious pack-
age detection. By leveraging anomaly detection techniques and
metadata analysis [14], systems can dynamically adapt to evolving
attack strategies. Meta-learning frameworks could analyze patterns
across registries and rapidly identify emerging threats, enhancing
the scalability and robustness of detection systems. Integrating such
frameworks will be key to staying ahead of increasingly sophisti-
cated attackers.

8 CONCLUSION
We present TypoSmart, an embedding-based typosquatting detec-
tion system. Based on real-world attack patterns, we refined the
typosquatting definition and developed a taxonomy based on en-
gineering practices. TypoSmart is being used in production at our
industry partner and contributed to the removal of 3,658 typosquat-
ting threats in one month. Compared to SOTA methods, our system
is good at capturing additional typosquatting categories, achieves
a substantially lower false-positive rate, and maintains acceptable
latency, making it well-suited for deployment on SPR backends
while remaining effective for frontend on-demand requests. We
shared our insights from production experience, customer feedback,
the need for an improved ontology, and outlined future directions.

The call for papers states that an extra page is allotted to discuss
ethics considerations and compliance with the open science policy.
This page contains that content.

9 ETHICAL CONSIDERATIONS
This section discusses the ethical implications of designing, imple-
menting, and deploying a system to detect typosquatting attacks
across multiple software registries. We also outline the risks and
benefits associated with sharing detailed detection methods and
results.

We attest that:
• Our data collection and handling was consistent with con-

ference guidelines and policies.
• Our study uses only publicly available metadata in SPRs,

eliminating privacy risks and not requiring IRB approval.
• We promptly disclosed all confirmed malicious/suspicious

packages to the registry maintainers.
• To the best of our ability, the research team has evaluated

all ethical implications, ensuring that all activities are con-
ducted responsibly and that future actions will continue to
uphold these standards.

9.1 Data Collection and Scope
We obtain comprehensive package metadata — including package
names, versions, download statistics, maintainers, and other rele-
vant attributes — from a private database maintained by our indus-
try partner, a software supply chain security company. This method
ensures that data collection is both systematic and compliant with
legal and ethical standards.

These data sources do not include sensitive personal information
(SPI) about package maintainers or users. By relying solely on
metadata necessary for detecting suspicious naming patterns and
assessing package-level attributes, we minimize privacy concerns.

9.2 Responsible Disclosure
Throughout our study, we promptly reported newly discovered ma-
licious or suspicious packages to the respective registry maintainers.
We delayed publication of any technical indicators that could fa-
cilitate ongoing attacks until the registries took corrective actions
(e.g., removal of malicious packages). This procedure protects users
from live threats while still allowing the broader community to
learn from our findings and detection strategies.

9.3 Risks and Benefits
In our judgment, the potential benefits of providing actionable
insights and better protective measures against typosquatting out-
weigh the risks.

We perceive two main risks:
• Highlighting Attack Vectors. By publicizing the detec-

tion pipeline, we inform potential attackers about its limi-
tations or thresholds, potentially encouraging them to find
new ways to evade detection.

• Unintentional Disclosure of Live Threats. Publishing
lists of suspected malicious packages could draw attention
to attacks still under investigation, particularly if registry
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maintainers have not yet removed them. Sharing such data
prematurely could increase user exposure to live threats.

We perceive two main benefits:
• Improved Ecosystem Security. Disclosing our detection

approach and findings helps registries, maintainers, and se-
curity practitioners find malicious packages faster, reducing
exposure to malware.

• Shared Knowledge for the Community. By openly de-
scribing our methods, we enable other researchers and in-
dustry professionals to replicate and extend our techniques,
contributing to broader, collaborative improvements in sup-
ply chain security.

10 COMPLIANCEWITH OPEN SCIENCE
POLICY

We acknowledge the USENIX Security open science policy, which
encourages authors to share data and artifacts. The artifacts asso-
ciated with this project are: (1) the case study we conducted on
analyzing prior typosquatting data (§3.1, §3.2); (2) the commercial
metadata database (§5.1); (3) the embedding database we created
(§5.2); (4) the other prototypes of our system (§5.3–§5.6); and (5)
our evaluation scripts and datasets (§6).
• Artifacts Shared. We will publish our case study, system’s

prototype implementation (excluding the commercial database)
(§5.2, §5.3–§5.6), and an anonymized summary of evaluation
results (§6). This includes our case study scripts and data, as
well as the typosquatting taxonomy (§3.1).
• Artifacts Withheld. To avoid enabling new attacks or disrupt-

ing ongoing investigations, we will not publicly list any active,
unreleased, or unresolved suspicious packages. We likewise will
not share raw metadata tied to live threats if doing so could aid
adversaries or disclose unresolved vulnerabilities. As informed
by the authors from [46], we will not share the raw dataset from
their work but their data is available by request. We will also
not share the commercial metadata database (§5.1).
An artifact will be made available following the USENIX process

and once it completes the review process from our industry partner.
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A TAXONOMY OF ENGINEERING PRACTICES
Figure 7 presents the taxonomy we created in §3.2.

B MORE SYSTEM IMPLEMENTATION DETAILS
B.1 Visualization of Embedding
Figure 6 shows a UMAP visualization of 100K npm packages [30].
Clusters often form around minor spelling variations, demonstrat-
ing how embeddings capture both lexical and semantic relation-
ships. This grouping is central to detecting maliciously similar
names that differ by a single character or switched letters.
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Figure 6: UMAP visualization of embedding space of 10K npm pack-
ages.

B.2 Detailed Embedding Efficiency
Measurement

Table 7 highlights the efficiency of embedding models across differ-
ent quantization formats (float32, float16, and int8), indexing
overhead, and memory usage. While float16 and int8 offer com-
parable throughput and latency due to similar I/O and storage over-
heads, int8 exhibits slightly higher latency in embedding creation
due to additional quantization steps. Across ecosystems, float16
and int8 achieve significant improvements in processing speed
and memory efficiency compared to float32, demonstrating their
suitability for scalable embedding-based systems.

B.3 Implementation of metadata verification
rules

Algorithm 1 shows our implementation of the engineering practice
categories. We apply both heuristic rules and LLM-based rules
to measure the attributes from Table 2 and use this algorithm to
check if a suspicious pair should be classified as true-positive or
false-positive.

Algorithm 1:Heuristic Rules for False-positive Verification
1: Input: typoDoc, legitDoc, registry
2: Output: Boolean,metrics, explanation
3: Initialize: Set all keys in metrics to None
4: for each key in metrics:
5: metrics[key]← None
6: Populate metrics using helper checks:
7: metrics←
_check_package_naming_and_purpose(typoDoc, legitDoc)

8: metrics["overlapped_maintainers"]←
_has_overlapped_maintainers(typoDoc, legitDoc, registry)

9: metrics["comprehensive_metadata"]←
_has_comprehensive_metadata(typoDoc)

10: metrics["active_development"]←
_is_actively_developed(typoDoc)

11: If ¬metrics["is_adversarial_name"] and
¬metrics["is_suspicious"]:

12: If metrics["obvious_not_typosquat"] or
metrics["fork_naming"] or isTest or

13: metrics["is_known_maintainer"] or
metrics["distinct_purpose"] or
metrics["overlapped_maintainers"]:

14: return (True,metrics, explanation)
15: If metrics["is_adversarial_name"] and
¬metrics["distinct_purpose"]:

16: return (False,metrics, explanation)
17: If ¬metrics["comprehensive_metadata"] or
¬metrics["distinct_purpose"] and

18: ¬metrics["is_adversarial_name"] or
¬metrics["active_development"]:

19: return (False,metrics, explanation)
20: If metrics["is_adversarial_name"] and

(¬metrics["distinct_purpose"] or
21: ¬metrics["comprehensive_metadata"]):
22: return (False,metrics, explanation)
23: isDeprecated← _check_deprecated(typoDoc)
24: If isDeprecated and metrics["is_adversarial_name"]:
25: return (True,metrics, explanation)
26: If metrics["is_suspicious"]:
27: return (False,metrics, explanation)
28: Return: (True,metrics, explanation)
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Figure 7: Taxonomy of engineering practices.

Table 7: Evaluation of embedding model efficiency, HNSW indexing overhead, and memory usage. The throughput and latency differences
between float16 and int8 are minimal due to similar overall I/O and storage overheads, as well as the efficient handling of embeddings using
pgvector. However, some increased latency in int8 embedding creation is observed due to additional quantization and processing steps required
for integer-based representations.

Quantization Ecosystem Throughput Avg Batch Avg Pkg Total PG Table PG DB Indexing
(batches/s) Latency (s) Latency (µs) Time (s) Size (GB) Size (GB) Time (s)

float32
Hugging Face 4.20 1062.44 2380.68 1941.68 9.25 45.26 4.46
Maven 4.59 697.16 2180.61 1380.76 6.57 46.97 4.91
Golang 2.42 3778.33 4135.75 7905.49 21.36 54.81 7.80
npm 3.73 7463.84 2678.89 13269.07 21.04 60.64 7.42
PyPI 9.57 312.03 1045.52 602.95 2.62 61.49 4.39
RubyGems 9.54 116.86 1049.14 220.00 0.94 61.80 4.07

float16
Hugging Face 19.67 203.86 508.61 414.82 3.22 36.73 4.75
Maven 20.44 156.54 489.42 309.90 2.51 34.74 4.77
Golang 19.07 520.25 524.55 1002.68 7.56 29.70 4.79
npm 36.94 669.87 270.72 1340.91 6.69 22.20 5.97
PyPI 38.33 76.03 261.04 150.54 0.77 21.38 4.23
RubyGems 37.88 28.09 264.40 55.44 0.28 21.02 4.35

int8
Hugging Face 22.12 192.31 452.20 368.81 3.22 36.73 4.84
Maven 18.32 161.71 546.01 345.73 2.51 34.72 4.81
Golang 19.23 499.12 520.22 994.40 7.56 29.70 4.75
npm 35.28 719.06 283.46 1404.03 6.69 22.20 5.28
PyPI 37.57 80.66 266.35 153.60 0.77 21.37 4.31
RubyGems 39.71 26.70 252.35 52.92 0.28 21.00 4.23
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