
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

ConfuGuard: Using Metadata to Detect Active and Stealthy
Package Confusion Attacks Accurately and at Scale

Anonymous Author(s)

ABSTRACT
Package confusion attacks such as typosquatting threaten software
supply chains. Attackers make packages with names that syntacti-
cally or semantically resemble legitimate ones, tricking engineers
into installing malware. While prior work has developed defenses
against package confusions in some software package registries, no-
tably NPM, PyPI, and RubyGems, gaps remain: high false-positive
rates; generalization to more software package ecosystems; and
insights from real-world deployment.

In this work, we introduce ConfuGuard, a solution designed to
address the challenges posed by package confusion threats. We
begin by presenting the first empirical analysis of benign signals
derived from prior package confusion data, uncovering their threat
patterns, engineering practices, and measurable attributes. We ob-
served that 13.3% of real package confusion attacks are initially
stealthy, so we take that into consideration and refined the defi-
nitions. Building on state-of-the-art approaches, we extend sup-
port from three to six software package registries, and leverage
package metadata to distinguish benign packages. Our approach
significantly reduces 64% false-positive (from 77% to 13%), with
acceptable additional overhead to filter out benign packages by
analyzing the package metadata. ConfuGuard is in production at
our industry partner, whose analysts have already confirmed 301
packages detected by ConfuGuard as real attacks. We share lessons
learned from production and provide insights to researchers.

1 INTRODUCTION
Software package registries (SPRs) are indispensable in modern de-
velopment. They help engineers develop applications by integrating
open-source packages, reducing costs and accelerating product cy-
cles [47, 52, 67]. SPRs are used by industry and governments [12, 57],
including in AI and safety-critical applications [27, 55]. The result-
ing software supply chain is an attractive target — if an adversary
can cause an engineer to install a malicious package, the attacker
may gain access to downstream users’ resources. One of their tactics
is package confusion attacks [28, 41]: creating malicious packages
with mis-leading names [23, 30, 44]. Figure 1 shows the attack
model, covering naming tactics (lexical, syntactic, and semantic
confusion) and attack timing (active vs. stealthy).

Researchers have proposed various methods to mitigate package
confusion attacks. Early solutions detected packages with lexically
similar names [50, 58, 65]. State-of-the-art approaches have begun
exploring semantic similarity [41]. However, as criticized by Ohm
et al. [43], prior work did not consider the false positive rate which
is important for industry use [43]. We observe two other shortcom-
ings: prior work focuses on limited SPRs, notably NPM and PyPI;
and the literature lacks any experience reports from production
deployment.

With our industry partner, we developed a novel system to de-
tect package confusion attacks. To address the problem of high

Downstream
Engineer

Package
Confusion Attack

Active Attack

Package w/ Malware

Stealthy Attack

Confusing Package
Attacker V1.0 V1.1

bz2file

bz2fiel bzip@xx/bz2file
Lexical Syntactic Semantic

Figure 1: Threat model illustrating common active and stealth pack-
age confusion attacks. These malicious packages can mislead de-
velopers into installing them or being included as dependencies in
downstream packages.

false positive rates, we measured the engineering practices of pack-
age confusion attackers, and propose signals, based on package
metadata, that distinguish benign packages from genuine (though
perhaps stealthy) threats. To generalize prior work to more SPRs,
we analyzed package naming practices and confusion attacks in
six SPRs, and identified novel aspects of these SPRs that expand
the attack surface for confusion attacks. To make our approach
production-grade, we develop embedding-based name comparisons
and a novel nearest-neighbor search algorithm that provides greater
efficiency and accuracy.

We integrated these techniques in the ConfuGuard system. We
evaluated ConfuGuard on previous attack datasets as well as several
months’ of production data. We report that ConfuGuard achieves
a false positive rate of 13%, an improvement of 64% over the state
of the art. On a modern server, ConfuGuard has average latency of
6.8 seconds per package. In production, ConfuGuard identified 301
confirmed package confusion attacks in its first three months.

To summarize our contributions:

• We refine the definition of package confusion attacks to encom-
pass both active and stealthy threats.

• We generalize prior analyses to several new SPRs, noting the
effect of package naming hierarchies on naming attack tactics.

• We propose novel algorithms to improve attack detection accu-
racy (embedding) and efficiency (nearest neighbor search).

• We open-source our production dataset, ConfuDB, which in-
cludes 1,561 production data triaged by security analysts.

• We share lessons learned from using ConfuGuard in production.

Significance: Package confusion attacks are common yet challeng-
ing to detect. This paper extends current knowledge by introducing
a novel detection system, designed through empirical analysis of
previous data and insights gained from ongoing deployment. Conf
uGuard is used in production by our industry partner.

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE ’26, 2026, Rio De Janeiro, Brazil Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

2 BACKGROUND AND RELATEDWORK
Here we discuss software package registries and naming conven-
tions (§2.1), package confusion attacks (§2.2), and defenses (§2.3).

2.1 SPRs and Package Naming
Much of modern software development depends on community
ecosystems of libraries and frameworks that facilitate software
reuse [67, 69]. We refer to these reusable software artifacts as soft-
ware packages. These packages are distributed by software package
registries (SPRs) [49, 52]. Table 1 shows the SPRs for six popular
ecosystems comprising over 7 million software packages. Some
SPRs restrict package publication to individual accounts, so the
publisher’s identifier does not appear in the package name. Others
allow grouping packages into namespaces or organizations, which
are incorporated into the package name.We call the former “1-level”
and the latter “hierarchical”.

SPRs typically act as infrastructure and leave it to the engineer-
ing community to establish norms for interaction. One aspect of
their “hands-off” approach is that SPRs impose almost no con-
straints on package names — they define an allowed character set
and forbid duplicate names [2, 3, 6–9]. This flexibility introduces
two related challenges for engineers. First, based on application
needs (e.g., traditional software vs. machine learning), engineers in
different SPRs have opted for different naming conventions, which
can enhance readability, maintainability, and collaboration [18, 26],
but which may also confuse newcomers. Second, as we detail next,
SPRs’ permissive naming practices enables adversaries to choose
package names to deliberately confuse engineers.

Table 1: Ecosystems examined in this study, highlighting their pri-
mary domains, naming conventions, and SOTA works on package
confusion detections. Registry sizes are as of Jan. 2025. An example
1-level naming pattern is PyPI’s requests module. An example hier-
archical name is Hugging Face’s google-bert/bert-base-uncased.

Registry (# pkgs) Domain Name Structure Prior Work

PyPI (619K) Python 1-level [41, 65]
RubyGems (212K) Ruby 1-level [41]
Maven (503K) Java Hierarchical N/A
Golang (175K) Go Hierarchical N/A
Hugging Face (1.1M) AI Models Hierarchical [26]
NPM (5.1M) JavaScript Both [41, 58]

2.2 Package Confusion Attacks and Taxonomy
Package confusion is an attack in which adversaries seek to persuade
engineers to install malicious packages [41].1 Attackers typically
choose a package name similar to a legitimate one that meets the
engineer’s needs [41]. Attacks may be multi-pronged, e.g., using
advertising campaigns to increase their chances of fooling engi-
neers [25, 51]. Package confusion attacks are an ongoing concern,
with hundreds of packages detected by researchers in Socket [4],
ReversingLabs [48], Orca [1], and others [15].

1Package confusion is the SPR-specific manifestation of the general naming
confusion attack, which affects all IT endeavors including DNS (domain names) [20,
22, 62], , BNS (Blockchain names) [39], and container images (image names) [10, 33].

Table 2 summarizes the state-of-the-art taxonomy of package
confusion techniques, based on Neupane et al. [41]. The variations
in naming structure in different SPRs also affect the nature of pack-
age confusion by SPR. In SPRs with 1-level names, as shown in
prior work, confusion attacks look like the top portion of the table.
In hierarchical SPRs (this work), the attacker has a larger naming
surface to exploit (bottom of table).

Table 2: Common package confusion techniques with examples. The
top section presents some of the taxonomy proposed by Neupane et
al. [41]. We added four patterns (bottom, cf. §4.1), generalizing the
prior taxonomy to attacks in other SPRs. The examples for those
four patterns are confusion threats flagged by ConfuGuard.

Technique Example (basis→ attack)
1-step Levenshtein Distance crypto→ crypt

Sequence reordering python-nmap→ nmap-python

Scope confusion @cicada/render→ cicada-render

Semantic substitution bz2file→ bzip

Alternate spelling colorama→ colourama

Impersonation Squatting meta-llama/Llama-2-7b-chat-hf→
facebook-llama/Llama-2-7b-chat-hf

Compound Squatting @typescript-eslint/eslint-plugin→
@typescript_eslinter/eslint

Domain Confusion (Golang) github.com/prometheus/prometheus→
git.luolix.top/prometheus/prometheus

Command Squatting NPM i −−help→ NPM i help

2.3 Defenses Against Package Confusion
Package confusion attacks can be mitigated at many points in the
reuse process, e.g., by scanning for malware in registries [64] or
during dependency installation [31] or by sandboxing dependen-
cies at runtime [14, 21, 63]. Such techniques provide good security
properties, but are computationally expensive. Our approach is part
of a class of cheaper techniques that leverage the most pertinent
attribute of a package confusion attack: the similarity of the name
to that of another package. We describe the literature in this vein.

2.3.1 Approaches. In the academic literature, the earliest name-
oriented defenses were purely lexical: Taylor et al. [58] and Vu et
al. [65] measured similarity using Levensthein distance [32] to iden-
tify PyPI packages with minor textual alterations from one another.
To detect confusion attacks based on name semantics (e.g., bz2file
vs. bzip), Neupane et al. [41] applied FastText embeddings [16] to
enable an abstract comparison of package names.

In acknowledgment of package confusion attacks, industry has
also offered some defenses. NPM and PyPI both use lexical distances
to flag packages or otherwise reduce user errors [42, 46, 70]. Some
other companies also offer relevant security tools. For example,
Stacklok combines Levenshtein distance with repository and author
activity metrics to assign a risk score to suspicious packages [54].
Microsoft’s OSSGadget generates lexical string permutations and
verifies the existence of mutated package names on SPRs to detect
potential package confusion attacks [38].

2.3.2 Knowledge gaps. Despite these advances, key challenges
persist that hinder the accuracy and reliability of current pack-
age confusion detection approaches. The primary concern was

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

ConfuGuard: Using Metadata to Detect Active and Stealthy Package Confusion Attacks Accurately and at Scale ICSE ’26, 2026, Rio De Janeiro, Brazil

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

articulated by Ohm et al. [43]: these techniques have high false-
positive rates. Second, detailed empirical treatments have so far
focused exclusively on package confusion attacks in NPM, PyPI,
and RubyGems [41, 59, 65], leaving unknown the confusion attacks
in SPRs with hierarchical naming structures. Finally, although sum-
maries of package confusion defenses in production are reassuring,
the lack of detailed production data makes their utility unclear.

3 PROBLEM STATEMENT
In this section, we give our definition of package confusion threats
(§3.1), our threat model (§3.2), and our system requirements (§3.3).

3.1 Refined Definition of Package Confusion
We refine the definition of package confusion threat by emphasizing
the manifestation of malicious intent. Our refined definition is
supported by our empirical analysis of real attacks in §4.1.

Definition: Package Confusion Threat

Apackage confusion threat is a software package whose
name mimics a trusted resource, with the intent of deceiv-
ing developers into installing code that is activelymalicious
or may become so (stealthy).2

The mimicry may be lexical (i.e., typosquatting), syntactic, or se-
mantic, but the intent is to confuse an engineer.

Because our definition considers threats, not just attacks, the
current absence of malware does not imply future innocence. In
contrast, prior work relies on malware detectors and only finds
active attacks [41, 59]. Incorporating stealthy threats into this defi-
nition raises the possibility of high false positive rates. To address
this, we analyzed false positives from prior package confusion data
(§4.2) to identify signals that distinguish benign packages from
stealthy threats.

3.2 Threat Model
We describe the context and threats considered in this work.

Context Model: We focus on software package registries, in-
cluding SPRs hosting traditional software packages and pre-trained
AI models. The relevant properties are given in §2.1.

Threat Model:We include some threats and exclude others.
• In-scope: We consider attacks where packages with deceptively

similar names to legitimate packages are published in the soft-
ware package registry. As our definition permits, the attacker
may initially publish non-malicious content (stealthy threat) and
later introduce malware (active threat).

• Out-of-scope: We exclude attacks using non-confusing package
names, or that compromise existing legitimate packages. These
attacks must be mitigated by other measures [44].

This threat model is stronger than those of existing package confu-
sion detection techniques [41, 58, 65], because we permit attacks
to start with stealthy (non-malicious) package content.

2For comparison, Neupane et al. wrote: “Package confusion attack: a malicious
package is created that is designed to be confused with a legitimate target package and
downloaded by mistake” [41]. This requires the package to be actively malicious.

Figure 2: Distribution of time until malware, in packages with con-
fusing names. 13.3% (32/240) of attacks occur ≥5 days after release.

3.3 Requirements
A detection system must meet both security and operational goals.
Working with our industry partner, we identified four requirements:
Req1: High precision and recall. A threat detection system must
balance precision (low false positive rate) against recall (low false
negative rate). False negatives enable attacks, but false positives
lead to alert fatigue [13].
Req2: Efficient and Timely Detection. The system must scale to
large registries — low-latency checks enabling real-time feedback.
Req3: Compatibility Across Ecosystems. The system must
support many SPRs with their diverse naming schemes (§2.1).
Req4: High Recall of Stealth Package Confusion Attacks. The
system must identify both active and stealth package confusions.

4 ANALYSIS OF CONFUSION ATTACKS
To address the high false positive rates of previous detection sys-
tems for package confusion, Ohm et al. recently called for a deeper
analysis of the available evidence [43]. We respond to their call
in two ways: describing attackers’ practices (§4.1), and reporting
metadata features that distinguish true from false positives (§4.2).

4.1 Attackers’ Practices
We examined first the role of stealth in confusion attacks, and then
the attack variations in SPRs beyond NPM, PyPI, and RubyGems.
Our findings informed requirements 1, 3, and 4 (§3.3).

4.1.1 Stealthy Confusion Attacks. We analyzed the versions of the
240 confirmed NPM package confusion “true-positives”, defined as
confusing packages that includemalware. These data were collected
and reported by Neupane et al. [41]. We analyzed the number of
days these malicious packages were available before malware was
injected. We estimated the injection time based on the last version
updated before removal by the SPR.

Figure 2 illustrates our findings on the release time before mal-
ware injection. Most package confusion attacks injected malware
on the first day of release, e.g., in the initial version. However, in
13.3% of the packages, attackers undertook stealth attacks, deploy-
ing malware after days or weeks. Attackers may use this strategy
to grow a userbase before exploitation. Prior work on package
confusion did not account for this behavior.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ICSE ’26, 2026, Rio De Janeiro, Brazil Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

4.1.2 Extending the Taxonomy to New SPRs. Prior work has exam-
ined malicious naming strategies in only a few SPRs. Our industry
partner’s analysts have studied package confusion attacks in many
other SPRs, including all those in Table 1. We discussed Neupane
et al.’s taxonomy with them, and compared it to the real-world
attack patterns they have observed. Through this dialogue, we iden-
tified four additional mechanisms for package confusion attacks.
Definitions follow; see §2.2 for examples.
• Impersonation Squatting. In hierarchical SPRs, attackers im-

personate legitimate maintainers or organizations by registering
a similar author or groupId.

• Compound Squatting.Making multiple coordinated edits to
a hierarchical name, e.g., altering both scope and delimiters at
once. We consider this distinct because the compounded changes
complicate conventional lexical comparisons.

• Domain Confusion. In SPRs where package names include
URLs (golang), attackers may register domains resembling those
of trusted mirrors or proxies.

• Command Squatting. Registering package names that mimic
command-line options in other packages or utilities.

4.2 Metadata Features of Package Confusion
As discussed in §2.3, almost all package confusion detectors make
use only of the names of packages. While this allows those systems
to avoid costly content analysis, it leads to high false positive rates.
We propose to integrate metadata to distinguish true from false
positives. Although metadata signals can be circumvented, our
approach aims to raise the attacker’s cost, reflecting the typical
cat-and-mouse dynamics in open package ecosystems [30].

4.2.1 Method. We randomly sampled 626 packages from the origi-
nal 640,482 false positives reported by Neupane et al. [41], which
have suspicious package names but are not flagged as malware in
their respective security analyses. This sample size gives a confi-
dence level of 99% with a margin of error of 5% on the resulting
distribution of causes.

To identify possible metadata signals in the existing package
confusion data, we began by having two researchers — experts
in software supply chains — analyze 200 of these packages. They
analyzed each package’s metadata (READMEs, maintainers, ver-
sions, etc.). Each analyst independently proposed possible features
based on this analysis (codebook) and then they discussed this code-
book together to reach agreement on terms and definitions. To test
valididty, they then independently applied this codebook to the
200 packages and measured agreement using Cohen’s Kappa [19].
The initial inter-rater reliability was 0.6 (“substantial” [37]). The
researchers subsequently discussed to resolve discrepancies and
refine their analysis. Through discussion, they reached consensus
on measurable attributes that could indicate malicious intent or the
possibility of a stealthy attack.

Based on the high agreement in this process, one of these re-
searchers analyzed the remaining 426 packages.

4.2.2 Results. Of the 626 packages sampled, 601 were still accessi-
ble. Among these, we identified 464 benign packages (77.2%) and
what we believe are 137 stealthy attacks (22.8%). The progression
of our results and the manually labeled dataset are available in

our artifact (§8). We identified 11 metadata features of the pack-
ages used in confusion attacks, as well as benign signals. These
attributes include factors such as a distinct purpose, adversarial
package naming, and the comprehensiveness of available metadata.
See Table 3 for the features leveraged in ConfuGuard.

5 CONFUGUARD DESIGN AND IMPLEMENTATION
We introduce ConfuGuard, our novel detector for package confu-
sion attacks. ConfuGuard is designed to meet the system require-
ments (§3.3). Addressing the insights from our empirical study (§4),
ConfuGuard integrates both syntactic and semantic name analysis,
hierarchical naming checks, and metadata-based verification to
enhance threat detection and mitigation. ConfuGuard is intended
for backend use, in package registries or similar platforms, and so
it prioritizes accuracy (Req1) over latency (Req2).

Figure 3 shows the five main components of ConfuGuard:
(1) A metadata database, ensuring real-time awareness of new and

evolving packages (Req4).
(2) A fine-tuned embedding database to capture domain-specific

semantic name similarities (Req1,3).
(3) Using popularity metrics to protect high-value targets (Req2,3).
(4) Checking for syntactic and semantic confusion strategies (Req2).
(5) Filtering out benign packages using package metadata (Req1,4).
The first three components provide infrastructure to support our
analysis (components 4 and 5). Next, we detail the rationale and
implementation of each part of ConfuGuard.

5.1 Part 1○: Package Metadata Database
5.1.1 Rationale. SPRs grow rapidly, and package confusion attacks
are initiated regularly. Comprehensive and regularly updated meta-
data ingestion enable early threat detection.

5.1.2 Approach. ConfuGuard relies on a database with package
names, version histories, commit logs, license info, maintainer
records, and other publicly-accessible metadata, all updated on
a weekly basis. Regular updates reduce concerns about stale data
and ensure our results are up to date. We specifically use our indus-
try partner’s private database, which consolidates metadata from
NPM, PyPI, RubyGems, Maven, Golang, and Hugging Face.

5.2 Part 2○: Defining Trusted Resources
5.2.1 Rationale. Confusion attacks mimic trusted resources. If an
attacker chooses a name that mimics an untrusted package, lit-
tle harm can result. Untrusted packages can be compared against
trusted ones to focus on the threats of highest potential impact.

5.2.2 Approach. Like prior works [41, 59], we operationalize trust
in terms of popularity. Software engineers commonly make use of
popularity signals as a proxy for trustworthiness [17], and thus at-
tackers choose names similar to popular packages. Our specific
popularity measure depends on the SPR. Many SPRs — in our
case, NPM, PyPI, RubyGems, and Hugging Face – offer weekly or
monthly download counts. Our other two supported SPRs, Maven
and Golang, do not publish download metrics. For these, we make
use of the ecosyste.ms database, which estimates popularity using
indicators like stargazers, forks, and dependent repositories [40].
The thresholds were set based on production experience. We chose

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

ConfuGuard: Using Metadata to Detect Active and Stealthy Package Confusion Attacks Accurately and at Scale ICSE ’26, 2026, Rio De Janeiro, Brazil

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 3: Overview of the 13 metadata-based verification rules. Each rule includes a description of its purpose and the specific implementation
steps taken to verify flagged packages. The final three rules (R12–R14) were added as part of our refinement process based on further observed
false-positive patterns after we deployed our system in production.

Rule Description Implementation

R1: Obviously unconfusing Determine if a package name conveys an intentional, brand-specific
identity (e.g., catplotlib), clearly differentiating it from deceptive
imitations.

Cross-reference flagged names with known legitimate projects and use LLM analysis to assess
whether the naming convention is deliberate and unambiguous for developers.

R2: Distinct Purpose Distinguish packages with different functionalities, even if names are
superficially similar (e.g., lodash-utils vs. lodash).

Extract package descriptions and calculate semantic similarity using TF-IDF cosine scores. A
score below 0.5 indicates distinct purposes, reducing suspicion of deception.

R3: Fork Package Detect benign forks sharing near-identical code or metadata with a
popular package.

Compare README files, version histories, and file structures for high overlap. Similarities
without malicious edits suggest harmless forks.

R4: Active Development/Maintained Determine if packages are frequently updated or actively maintained
bymultiple contributors, which are less likely to havemalicious intent.

Retrieve metadata for the last update, commit history, and version count. Classify packages
with recent updates (e.g., within 30 days) or more than five versions as legitimate.

R5: Comprehensive Metadata Identify packages missing critical metadata elements, such as licenses,
maintainers, or homepages, which are typical of legitimate projects.

Check for the presence of licenses, contact details, and repository links.

R6: Overlapped Maintainers Distinguish legitimate extensions or rebrands by verifying if the
flagged package shares maintainers with the legitimate one.

Match maintainer identifiers (e.g., email, GitHub handle) between flagged and legitimate
packages. Overlapping maintainers suggest legitimate intent.

R7: Adversarial Package Name Filter out name pairs with significant length differences, as these often
indicate unrelated projects rather than covert mimicry.

Compare string lengths of flagged and legitimate package names. A difference exceeding 30%
indicates likely unrelated naming.

R8: Well-known Maintainers Trust packages maintained by reputable and recognized au-
thors/organizations.

Leverage knowledge in LLM training data to identify if a maintainer is trustworthy in the
community.

R9: Clear Description Verify that each package includes a README or equivalent documen-
tation detailing its purpose, usage, and key features.

Analyze repository metadata to ensure there is a clear, summarized description of the package;
packages lacking such documentation should be flagged for further review.

R10: Has Malicious Intent Identify packages that deliberately mimic legitimate ones through
near-identical descriptions, or have obviously suspicious content.

Use LLM to analyze the package name and description to triage whether there is obvious
malicious intent in the package.

R11: Experiment/Test Package Identify packages that are used for test or experiment purposes only. Use LLM to analyze package descriptions and determine whether it is an experiment/test.

R12: Package Relocation Account for legitimate package relocations, common in hierarchical
registries like Maven.

Parse metadata files (pom.xml) for <relocation> tags or analogous fields. Identify and ignore
renamed or migrated projects.

R13: Organization Allowed List Prevent false positives by excluding packages published by trusted or
verified organizations.

Maintain an allowedlist of approved organizations. If a flagged package is published under an
allowed organization (e.g., @oxc-parser/binding-darwin-arm64), it should be considered
legitimate, comparing to binding-darwin-arm64.

R14: Domain Proxy/Mirror Account for legitimate proxies or mirrors in the ecosystem, common
in hierarchical registries like Golang.

Maintain an allowed list of recognized domains that serve as proxies or mirrors. If a given
package is published under a valid domain (e.g., gopkg.in/go-git/go-git), consider it
legitimate when compared to its primary source (github.com/go-git/go-git).

Supported Ecosystems

PKG Database

PKG Names Finetuned FastText
Model

Embedding Database

Trusted Resources
Check

 Popular PKGs
& Commands

Neighbor
Search

Similarity
Sort

Most Similar
Neighbor

Metadata Features

? Defining Trusted Resources

? Package
Metadata Database

? Package Name Embedding Database Creation

? Package Confusion Search

? Benignity Check

Benign packages

Alert

EQ2

EQ3
EQ4

? Alerting

EQ5
EQ1

 Popularity
metrics

Infrastructure (? - ?) Analysis (? - ?)

CLI analysis

FT

Figure 3: Overview of the ConfuGuard design with five primary components. The main novelty of ConfuGuard is the techniques of Part 4 and 5.
We also improve on prior work in Part 2. and Part 1 (DB) can be constructed using public registry APIs. Part 3’s approach for popular packages
is from prior work, adapted for the broader set of SPRs we handle [41, 58]. The red texts indicate the evaluation questions (EQs).

5,000 weekly downloads for NPM, PyPI, and RubyGems; 1,000 for
Hugging Face due to its costly usage; and an avg_ranking score of
10 for Maven and Golang. We then adjusted the Golang thresholds
to 4 to balance production latency.

Adversaries may inflate the popularity statistics of their pack-
ages [25], which could cause a malicious (or decoy) package to
become trusted. If our partner’s analyst team flags any package as
suspicious (§5.6), it is removed from the list of trusted packages.

As a secondary definition of trust, we analyzed the command-
line interfaces of tooling for each SPR, e.g., the “npm” and “mvn”
commands. These interfaces contain built-in keywords and com-
mands which a careless engineer might confuse or mis-type for
package names, e.g.,mistaking npm i help (install a package named

help) for npm i −−help (help command). All such keywords are
included as trusted resources.

5.3 Part 3○: Package Name Embeddings
5.3.1 Rationale. Detecting maliciously similar names requires ac-
curately capturing subtle lexical, syntactic, and semantic varia-
tions. Traditional Levenshtein edit distance methods often fail to
account for domain-specific semantic nuances (e.g., meta-llama vs.
facebook-llama), while generic embedding models can introduce
inaccuracies, resulting in higher false-positive or false-negative
rates. Prior work apply embedding for word-wise semantic simi-
larity check [41], while we would also like to use embedding for
the whole name to support efficient neighbor search (§5.4). Robust,

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE ’26, 2026, Rio De Janeiro, Brazil Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

fine-tuned embeddings address these shortcomings by providing
enhanced semantic sensitivity, reducing erroneous alerts. More-
over, this embedding approach is also generic and unified to support
various naming convention of SPRs.

5.3.2 Approach. An embedding fine-tuned on real package names
enhances semantic sensitivity, enabling the detection of adversarial
or suspicious names. This capability is integral to assessing the risk
associated with a package and serves as a cornerstone of our intent-
centric approach. Following [41], we build upon FastText [16], start-
ing with the pre-trained model pre-trained on cc.en.300.bin, and
fine-tune it using all (totally ∼9.1 million) package names extracted
from the metadata database in Nov. 2024 (§5.1). By fine-tuning, our
version is expected to better capture domain-specific subwords.

We then use the fine-tuned embedding model to create an em-
bedding vector database utilizing the vector format provided by
pgvector due to its efficient vector operations for databases [11].
Given a package name, we remove its delimiters, pass the concate-
nated string to the embedding model, and store the extracted em-
bedding in our database. We note that for hierarchical names from
Golang (domain/author/repository), Maven (groupId:artifactId),
and Hugging Face (author/model), we split names to create both
author and package identifier embeddings per package. This ap-
proach mitigates high false-positive rates that occur when a single
embedding causes similar packages from the same organization or
author to be incorrectly classified as confusing in §5.4.

The complete embedding database occupies 24 GB, with each
embedding vector corresponding to a single package name (or
its author name and package identifier). This setup not only
facilitates rapid query-based lookups but also supports subsequent
steps in package neighbor searching. Visualization of the extracted
embedding vectors is available in our artifact (§8).

5.4 Part 4○: Package Confusion Search
Having obtained the appropriate infrastructure (Parts 1–3), wemust
now detect package confusion threats efficiently yet accurately. In
Part 4, we efficiently flag possible threats, and then in Part 5 we
filter out likely-benign ones.

5.4.1 Rationale. Modern SPRs are enormous, so any detection
scheme must be designed with scalability in mind. Given the set
of all packages in an ecosystem, we follow prior work [41, 58] by
comparing the (relatively large) “long tail” of untrusted resources
to the (relatively small) set of trusted resources.

5.4.2 Approach.

Trusted Resources Selection. We compare untrusted resources
(i.e., unpopular packages) against all names in the popular list. For
packages in the trusted resources list (i.e., popular packages), we
compare it only with “more” trusted packages — for popularity, we
use download rates ≥10x higher or ecosyste.ms scores ≥2x higher.

Neighbor Search (Package Name Similarity Search). We perform
a distance search between each resource and the set of trusted re-
sources. Syntactic similarity is measured using Levenshtein distance
with a threshold of 2, while semantic similarity is determined using
embedding distance. For semantic similarity, we apply a cosine simi-
larity threshold of 0.93, as suggested in §6.2. For hierarchical names,

we adjust the similarity thresholds to 0.99 for package identifiers
and 0.9 for author names to better detect compound squatting
attacks. To efficiently measure semantic similarity, we leverage the
Approximate Nearest Neighbors method with the HNSW index [36]
in PostgreSQL. We opted for HNSW over IVFFlat based on bench-
marking results that show faster search speeds and minimal vector
perturbation [60]. By partitioning the embedding space into mul-
tiple clusters, the HNSW index limits distance computations to
a smaller subset of candidate packages, rather than exhaustively
comparing all pairs (Req3).

Similarity Sort and Most Similar Neighbor(s). Inspired by Neu-
pane et al. [41], we define a similarity function that ranks neighbors
based on Levenshtein distance, n-gram similarity, phonetics, sub-
string matching, and fuzzy ratio. This sorting ensures the system
accurately identifies the most likely attack target. If the previous
steps produce any nearby neighbors, we consider these as possible
attack targets. We treat the nearest neighbors as the most likely
targets. The suspicious package and these nearest neighbors are
propagated to the benignity check (§5.5). Currently we consider
only the two nearest neighbors, balancing accuracy against speed.

5.5 Part 5○: Benignity Filter
5.5.1 Rationale. Prior work used purely string-oriented methods,
which often misclassify harmless or beneficial packages as confu-
sion attacks. To mitigate false positives, we developed a metadata-
driven benignity check inspired by a recent metadata-aware mal-
ware detector [56]. We seek to filter out legitimate packages based
on explainable heuristics, avoiding unnecessary alerts.

5.5.2 Approach. Our analysis of false-positive data (§4.2) showed
many reasons for which legitimate packages may have names re-
sembling other trusted resources. We iteratively developed 10 rules
that utilize metadata features (e.g., version history, maintainers)
to distinguish package confusion attacks from benign packages.
We apply these rules to assess the benignity of fetched neighbors
from §5.4 and reduce the false positive rate. We added several
additional rules during deployment. During implementation, we
identify rules that require description analysis (e.g., R1, R2, R3) or
additional knowledge (e.g., R8). To handle these cases, we use an
LLM to analyze each package and generate the corresponding rules.
We provide the package description and relevant metadata as input,
refining the prompt iteratively based on feedback from security
analysts. The final prompts are available in our artifact (§8).

Table 3 summarizes the goals and implementation details for each
rule. Once our name-based detector flags a package as suspicious,
we retrieve its metadata and apply benignity check rules, using a
simple weighted sum to calculate a risk score. We have explored
both manually-assigned weights and learning them from regression.
The simple scoring function facilitates feedback from analysts.

5.6 Part 6○: Alerting in Production
Use in Production. ConfuGuard is integrated into our industry

partner’s security scanning system for software packages. They
had previously relied primarily on content-based malware scan-
ners, but these are so computationally costly that they cannot be
applied at scale. Their former approach for scalable detection of

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

ConfuGuard: Using Metadata to Detect Active and Stealthy Package Confusion Attacks Accurately and at Scale ICSE ’26, 2026, Rio De Janeiro, Brazil

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

confusion attacks was a lexical check (Levenshtein distance) which
had an unacceptably high false positive rate. ConfuGuard replaced
that approach and complements the malware scanners. A team of
analysts triages alerts from ConfuGuard and the other scanners to
make a threat assessment. If they deem a package to be malicious,
that information is propagated to our partner’s customers through
their security feeds.

Experience-Driven Optimizations. We trialed several versions and
parameterizations of ConfuGuard over several months to enhance
its performance. We share four examples. First, to improve accuracy
across ecosystems, we tailored the neighbor search query (Part 4).
For instance, lengthy identifiers, e.g., Maven’s artifact_id and
Golang’s domain name, diminish the effectiveness of embedding
similarity. To address this, we opted to compute separate similarity
measurements for each component of the package names and apply
an edit distance threshold. If the difference exceeds two-thirds of the
original name’s length, it is unlikely to confuse users. Second, within
our threat model, we determined that changes to both identifiers in
Maven, Golang, and Hugging Face were unlikely to confuse users
and no such attacks were observed. Consequently, we excluded
these from our algorithm. Third, we refined our metadata checks
for benignity. We added rules R11, R12, and R13 based on observed
patterns. Fourth, for performance, we experimented with quantized
versions of the embedding model. Ultimately we found the latency
gain a poor bargain for the resulting accuracy degradation.

6 EVALUATION
To evaluate ConfuGuard, we pose five Evaluation Questions (EQs)
to assess its performance at the component level (EQ1–EQ3) and
the system level (EQ4–EQ5). At the component level, we measure
the effectiveness of novel mechanisms introduced in ConfuGuard.
At the system level, we evaluate its integrated functionality and
scalability compared to baseline tools (§6.1), and ability to detect
real-world package confusion threats. Additionally, we compare
our approach to SOTA methods to benchmark its effectiveness. An
overview of the evaluation process is illustrated in Figure 3.

Component-level. We assess how individual components con-
tribute effectively to the overall system.

• EQ1: Performance of Embedding Model.What is the accu-
racy and efficiency of our embedding model? (§5.2)

• EQ2: Neighbor Search Accuracy.How effective is the neighbor
search approach? (§5.4)

• EQ3: Metadata Verification Accuracy. How much does the
benignity filter reduce false positive rates? (§5.5)

System-level. We examine the performance of the full ConfuGua
rd system and compare to other approaches.

• EQ4: Discovery. Can ConfuGuard identify previously unknown
package confusion threats?

• EQ5: Baseline Comparison. How does ConfuGuard perform
in terms of accuracy and latency compared to SOTA tools?

All experiments run on a server with 32 CPU cores (Intel Xeon
CPU @ 2.80GHz) and 256 GB of RAM. Notably, the training and
fine-tuning of FastText models do not require GPUs.

6.1 Baseline and Evaluation Datasets
State-of-the-Art Baselines. We compare our system to the Lev-

enshtein distance approach [65], and Typomind [41]. We consider
OSSGadget [38] out of scope because it only handles lexical confu-
sions and its latency for long package names makes it unsuitable
for production. These are all state-of-the-art open-source tools.

Evaluation Datasets. We evaluate using two datasets:
• NeupaneDB: 1,840 packages from [41], including 1,239 confirmed

real-world package confusion attacks, and 601 manually labeled
data we analyzed in §4.2.

• ConfuDB: 1,561 packages triaged by security analysts, collected
during the development and refinement of ConfuGuard (§5.6).

6.2 EQ1: Perf. of Embedding Model
We measured effectiveness and efficiency of our embedding model.

6.2.1 Effectiveness.

Method. We evaluate the effectiveness of embedding-based simi-
larity detection by comparing three approaches:
(1) Levenshtein-Distance, calculates the number of single-character

edits required to change one package name to another.
(2) Pre-trained FastText [16] (cc.en.300.bin), used in the SOTA

work Typomind [41], employs the general-purpose embedding
model cc.en.300.bin [16] to capture semantic relationships.

(3) Fine-tuned FastText (Ours), which we have adapted using a cor-
pus specifically composed of package names to better capture
domain-specific similarities.
To systematically compare these methods, we construct a bal-

anced test set consisting of both positive and negative pairs, with
each category containing 1,239 data points.
• Positive Pairs: 1,239 real package confusions from NeupaneDB [41].
• Negative Pairs: Created by randomly pairing unrelated package

names from registries, ensuring low similarity scores across all
tested methods. These pairs are guaranteed not to represent
package confusion relationships.
For each approach, we applied a predefined similarity threshold

to classify package pairs as potential package confusion attacks.
The threshold was selected via a grid search to optimize Precision
and Recall, ensuring effective identification of true confusions. Pairs
with similarity scores above the threshold were classified as positive,
while those below were classified as negative. False positives were
subsequently filtered using our false-positive verification process
in Step 5○. We compute Precision, Recall, and F1 scores for each
approach to assess their performance.

Table 4: Similarity effectiveness of using distance and embedding.
We apply a grid search which automatically determines the optimal
threshold tomaximize F1 scores for positive pairs while maintaining
relatively high F1 scores for negative pairs.

Model Positive Pairs Negative Pairs Overall Score
P R F1 P R F1 Score

Levenshtein Distance 1.00 0.80 0.89 1.00 1.00 1.00 0.94
Pretrained 1.00 0.85 0.92 1.00 0.98 0.99 0.96
Fine-Tuned (Ours) 1.00 0.90 0.95 1.00 0.96 0.98 0.96

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ICSE ’26, 2026, Rio De Janeiro, Brazil Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Threshold

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Threshold vs Accuracy (Fine-tuned)
Accuracy
Similarity Threshold = 0.93

(a)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

it
iv

e
Ra

te

ROC Curve (Fine-tuned)

ROC curve (AUC = 0.94)
Similarity Threshold = 0.93

(b)

Figure 4: Performance Metrics of the Fine-Tuned Model: (a) Thresh-
old Accuracy and (b) ROC Curve.

Result. Table 4 presents the comparison between our fine-tuned
model and baseline approaches. The results show that our approach
outperforms both the Levenshtein Distance and Pretrained mod-
els, achieving the highest F1 score for positive pairs (0.95) while
maintaining strong performance on negative pairs (0.98).

Figure 4 illustrates the performance metrics of our approach
through a grid search, highlighting the relationship between sim-
ilarity threshold and accuracy, as well as the ROC curve for the
fine-tuned model. The optimal similarity threshold of 0.93, identi-
fied through this search, is used in the production system. With an
AUC of 0.94, our model demonstrates a balanced trade-off between
precision and recall for both positive and negative pairs.

6.2.2 Efficiency.

Method. To assess the efficiency of embedding database creation,
we evaluated the overhead of embedding database creation step
(§5.3). We evaluated the embedding database creation efficiency by
measuring the throughput, latency, and overall overhead associated.

Table 5: Evaluation of embedding model efficiency, HNSW indexing
overhead, and total embedding database creation overhead.

Ecosystem Throughput Latency Indexing Time Total Overhead
(pkgs/s) (ms) (s) (s)

NPM 7705.99 0.13 7.42 650.19
PyPI 13581.15 0.07 4.39 46.85
RubyGems 8694.68 0.12 4.07 28.18
Maven 4887.19 0.20 4.91 134.47
Golang 8490.36 0.12 7.80 232.93
Hugging Face 5027.95 0.20 4.46 166.67

Result. Table 5 presents the efficiency measurement. Overall, the
quantized models demonstrate strong performance with minimal
overhead. The HNSW indexing adds negligible processing time,
requiring less than 10 seconds additional overhead per table.

6.3 EQ2: Neighbor Search Accuracy
Methods. We use a threshold of 0.93 obtained from EQ1. To evalu-

ate neighbor search performance, we analyzed suspicious packages
identified by Typomind.

Results. Our neighbor search algorithm accurately detected 99%
of the 1,239 real-world package confusion attacks from NeupaneDB [41].
Moreover, our method effectively flagged impersonation squatting
attacks targeting hierarchical package names, notably identifying

reported cases on Hugging Face [45] and Golang [5] that earlier
methods overlooked. These findings confirm that our neighbor
search algorithm achieves state-of-the-art performance.

6.4 EQ3: Benignity Check Accuracy
Method. Starting with the raw embedding output (i.e., packages

flagged for name-based suspicion), we apply the benignity check
described in §5.5.

We first use cross-validation to learn the weights and measure
false positive rates (FPR) using NeupaneDB. We then computed
SHAP values by learning the weighed sum through regression to
quantify the importance of each metric defined in Table 2 [35]. The
resulting SHAP plot provides clear insights into how these metrics
contribute to our system’s decision-making process. Additionally,
we use regression to learn the weights

Result. Figure 5 shows the SHAP value plot which indicates that
our rules used in the benignity filter are useful. The plot highlights
that distinct purpose (R2) and suspicious intent (R10) are the most
influential features driving the model’s predictions, suggesting that
packages showing suspicious or unusual behavior strongly push the
model toward a malicious classification. Conversely, features such
as knownmaintainers (R8) and fork packages (R3) generally pull the
model’s output toward benign, indicating they lower the likelihood
of a threat. Meanwhile, no clear description also shows a notable
positive effect, aligning with the idea that missing documentation
can be an indicator of malicious intent (R9).

We use cross-validation to learn parameters and estimate the
trade-off between reducing false positives and increasing false neg-
atives. Our benignity filter correctly flagged 399 out of 464 (86%)
false positives in the human labeled set. In the real-world attack
set, it failed to classify 53 true positives out of 443.3 A detailed in-
vestigation revealed two main causes: (1) missing metadata and (2)
attacks that had been removed, with the package now maintained
by npm, which the filter considers a valid maintainer.

These results confirm that supplementary heuristics beyond raw
name similarity reduce false positives while retaining high recall
for genuinely malicious confusions.

6.5 EQ4: Discovery of New Package Confusions
Method. To evaluate the effectiveness of our package confusion

detection system, we deployed ConfuGuard in a production en-
vironment for three month. During this period, flagged packages
were analyzed using a commercial malware scanner and reviewed
by threat analysts for detailed insights.

Result. Table 6 presents the package confusion attack that Con
fuGuard identified during three months deployment period (i.e.,
ConfuDB). Within this database, 1,260 packages were labeled as
false positives.4 Among the remaining 301 suspicious packages, 230
(76%) exhibited stealthy confusion attack behavior, 63 (21%) were
identified as malware, 6 (2%) were categorized as vulnerabilities,
and 2 (0.7%) fell into other anomaly categories.

3Only 443 out of 1,239 real attacks still have available metadata for our analysis.
4The high false positive rate in ConfuDB is primarily due to the difficulty of

confirming stealthy confusion attacks, which were left unreviewed by analysts.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

ConfuGuard: Using Metadata to Detect Active and Stealthy Package Confusion Attacks Accurately and at Scale ICSE ’26, 2026, Rio De Janeiro, Brazil

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Table 6: Accuracy metrics for ConfuGuard and Typomind, detailing true/false positives and negatives, as well as recall, precision, F1 score, and
accuracy for active, stealthy, and benign threats. Although Typomind flags all packages as suspicious, our benignity filter substantially reduces
false positives in production. Due to availability of metadata, we evaluated ConfuGuard on 1,043 packages from NeupaneDB and 1,202 ConfuDB.
We note that ConfuGuard exhibits lower benign classification accuracy in ConfuDB because it flags more complex cases (e.g., compound squatting)
as potential threats, a nuance that Typomind does not capture.

Dataset Total Threat Type Sub-total ConfuGuard Typomind

TP FP TN FN Recall Prec. F1 Acc. TP FP TN FN Recall Prec. F1 Acc.
Active 1,239 386 0 0 57 0.87 1.00 0.93 0.87 1000 0 0 239 0.80 1.00 0.89 0.81

NeupaneDB 1,840 Stealthy 137 80 0 0 56 0.59 1.00 0.74 0.59 137 0 0 0 1.00 1.00 1.00 1.00
Benign 464 0 72 391 0 0.00 0.00 0.00 0.84 0 464 0 0 0.00 0.00 0.00 0.00
Active 71 41 0 0 4 0.91 1.00 0.95 0.91 40 0 0 31 0.56 1.00 0.72 0.56

ConfuDB 1,561 Stealthy 230 110 0 0 24 0.82 1.00 0.90 0.82 111 0 0 113 0.50 1.00 0.66 0.50
Benign 1,260 0 532 491 0 0.00 0.00 0.00 0.48 0 322 612 0 0.00 0.00 0.00 0.65

1 0
SHAP value (impact on model output)

R12: Package Relocation
R11: Experiment/test package

R10: Has Malicious Intent
R9: Clear Description

R8: Well-known Maintainers
R7: Adversarial Package Name

R6: Overlapped Maintainers
R5: Comprehensive Metadata

R4: Active Development/Maintained
R3: Fork Package

R2: Distinct Purpose
R1: Obviously unconfusing

Low

High

Fe
at

ur
e

va
lu

e

Figure 5: SHAP value plot for metadata verification using learnable
features (i.e., excluding R13, R14) from Table 3. The x-axis shows
each feature’s impact on model output (positive values are towards
benginity). Feature values are color-coded: red indicates high values
with a strong, direct impact on the model output.

Analysis of production data shows that ConfuGuard effectively
detects advanced threats (§4.1) – including compound, imperson-
ation, and command squatting – across platforms such as Maven,
Golang, and Hugging Face. For example, it identified an imperson-
ation squatting attack on Maven: the malicious package io.git
hub.leetcrunch:scribejava-core mimicked the legitimate c
om.github.scribejava. Although the package content appears
identical at first glance, it contains code that injects a network
call to steal user credentials. Similarly, our system detected mal-
ware on a Golang package, where the username boltdb-go at-
tempted to impersonate boltdb. ConfuGuard also flagged suspi-
cious Hugging Face packages, such as TheBlock/Mistral-7B-I
nstruct-v0.2-GGUF, mimicking benign package, TheBloke/Mis
tral-7B-Instruct-v0.2-GGUF, which has 92K monthly down-
loads. We were also able to capture domain conufsions, such ass
Go packages from github.phpd.cn and github.hscsec.cnwhich
look like proxies of official Golang packages but contain malware
that either sets up a rogue MySQL server to steal sensitive files
or intercepts and downgrades secure traffic to redirect data to
attacker-controlled endpoints. Additionally, we uncovered a com-
pound squatting attack on @typescript-eslint/eslint-plugin,

where an attacker used a similar namespace and package identifier
(@typescript_eslinter/eslint) to mislead users.

6.6 EQ5: System Accuracy and Efficiency
Method. We evaluated the end-to-end system accuracy and effi-

ciency (i.e., latency and throughput) by running ConfuGuard and
Typomind on NeupaneDB and ConfuDB.

Result. Table 6 presents the accuracy measurements. Across the
datasets, ConfuGuard generally exhibits stronger performance in
detecting active threats, achieving higher recall than Typomind
while both maintain perfect precision. In the case of stealthy threats,
the results are mixed: Typomind excels in the NeupaneDB dataset
with a perfect recall, yet its performance declines in ConfuDBwhere
ConfuGuard outperforms it. For benign cases, the accuracy differs
notably, as Typomind misclassifies benign packages in NeupaneDB,
whereas it performs better on ConfuDB, though still lower than
ConfuGuard’s performance in that category. Overall, ConfuGuar
d demonstrates strengths in detecting active and stealthy threats
across datasets, reducing the FPR from 77% (§4.2) to 13% (72/543).

Table 7: System latency and throughput measurements. ConfuGuard
has higher latency due to the additional benignity filter. Our industry
partner considers this performance overhead acceptable.

ConfuGuard Typomind

Latency (ms/pkg) 6816 120
Throughput (#pkgs/s) 0.08 0.26

Table 7 indicates that while ConfuGuard incurs significantly
higher latency (6816 ms per package vs. 120 ms for Typomind) and
lower throughput (0.08 vs. 0.26 packages/s), these trade-offs are
acceptable in production because the additional latency—stemming
from benignity filtering and reliance on LLM-based metadata verifi-
cation—substantially enhances detection accuracy by reducing false
positives. Despite slower processing due to dependencies on the
OpenAI API and o3-mini, the system scales effectively across large
registries, and future work may optimize inference times without
compromising accuracy. Notably, ConfuGuard significantly reduces
the workload on analysts, resulting in notable cost savings.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ICSE ’26, 2026, Rio De Janeiro, Brazil Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

7 DISCUSSION
7.1 Three Lessons Learned from Production

Lesson 1: ConfuGuard prevents real confusion attacks. Over the
past two months, we deployed the system in our industry partner’s
production environment, during which we identified and confirmed
301 threats, with 37,266 additional threats under review.

Lesson 2: False Positives Harm Our Customers. Table 3 represents
the most recent metadata verification rules. In deployment, we
found additional cases where the package has a very similar name
and the README of their package was missing which made our
system classify it as suspicious stealth attack. That package was
owned by one of our partner’s customers and served as a “transi-
tive package”. The customer felt that being flagged harmed their
reputation. We added an allow-list tied to our partner’s customers.

Lesson 3: Ontology Matters. ConfuGuard is deployed as part of a
security analysis pipeline, with human analysts to triage the results
(§5.6). Analysts need to be able to interpret the results of ConfuGua
rd. The analysts feel that the package confusion categories outlined
in Table 2 do not provide sufficient explanatory power. We propose
to refine the confusion taxonomy to consider the malicious content
and intent behind each package, including a risk-level classification.

7.2 Limitations and Security Analysis
This section discusses our system limitations and how attackers
might bypass ConfuGuard.

Gaming Metrics. Our system relies on software metrics to gauge
the likelihood that a package is a confusion attack. These metrics
might be gamed. There has been little formal study of the feasi-
bility of gaming these metrics, but recent work suggests both the
possibility and some real-world examples [25].

Limitations in Neighbor Search. One significant limitation of Con
fuGuard is its inability to handle short names or acronyms. FastText
struggles with short words (e.g., xml vs. yml have a similarity score
of 0.7). The model’s reliance on character n-grams often fails to
capture subtle similarities effectively in such cases, providing an av-
enue for attackers to exploit short package names. To mitigate this,
we implemented a list of potential substitutions to identify cases
of visual or phonetic ambiguity, and we combine embedding simi-
larity with Levenshtein distance. This hybrid approach improves
neighbor search for short names, but increases the computational
cost does not fully resolve the concern.

Bypassing Metadata Verification. Using an LLM for benign filter-
ing introduces correctness risks (hallucination, jailbreaking [68]).
Adversaries might exploit this by tailoring their package name or
metadata to persuade the LLM that the package is trustworthy
using techniques like prompt injection or model hijacking [34, 71].

7.3 Future Directions
Enhancing Representations for Package Confusion Detection: Im-

proving the representation of package names is crucial for more ro-
bust detection. While FastText captures semantic similarity through
subword embeddings, it struggles with typographical variations,
particularly for short words or acronyms. Fine-tuning FastText or

training a more efficient model on domain-specific corpora includ-
ing both correct and misspelled terms can address these limitations.
Augmenting training data with synthetic typos and incorporating
typo normalization or correction techniques before embedding gen-
eration can significantly reduce errors. Advanced models, such as
transformer-based architectures fine-tuned with contrastive learn-
ing on typo-specific datasets, present a promising alternative for
enhancing detection accuracy and reliability. This approach has
proven effective in combating domain typosquatting, but no re-
search has been conducted targeting package typosquatting [29].
One challenge is the limited availability of data for verifying pack-
age squatting cases. LLMs might help here [61].

Mitigating LLM Hallucination in Code Generation. The increasing
use of LLMs for code generation has introduced new challenges,
as these models often hallucinate package names or generate com-
mands for nonexistent or maliciously similar packages [53]. These
hallucinations pose serious threats to the security of the software
supply chain [61, 66]. Addressing this issue requires implement-
ing typo or hallucination correction mechanisms in LLM-based
package recommenders. Verifying package legitimacy, detecting
typos, and integrating contextual checks can prevent the propaga-
tion of incorrect package names, reducing the risks associated with
hallucinations.

Meta-Learning for Malicious Package Detection. Meta-learning
approaches offer significant potential for improving malicious pack-
age detection. By leveraging anomaly detection techniques and
metadata analysis [24], systems can dynamically adapt to evolving
attack strategies. Meta-learning frameworks could analyze patterns
across registries and rapidly identify emerging threats, enhancing
the scalability and robustness of detection systems. Integrating such
frameworks will be key to staying ahead of increasingly sophisti-
cated attackers.

8 CONCLUSION
We present ConfuGuard, an embedding-based package confusion
detection system. Based on real-world attack patterns, we refined
the package confusion definition and developed a taxonomy based
on engineering practices. ConfuGuard is being used in production
at our industry partner and contributed to 301 confirmed package
confusion threats in three months. Compared to SOTA methods,
our system is good at capturing additional confusion categories,
achieves a substantially lower false-positive rate, and maintains
acceptable latency, making it well-suited for deployment on SPR
backends while remaining effective for frontend on-demand re-
quests. We shared our insights from production experience, cus-
tomer feedback, the need for an improved ontology, and outlined
future directions.

DATA AVAILABILITY AND RESEARCH ETHICS
Our artifact is available at: https://github.com/confuguard/confuguard.
For replicability, we include all results and the code of the system,
except the commercial metadata database (§5.1).

Our work poses limited ethical concerns. We analyzed public
packages and disclosed suspicious ones to our industry partner.

10

https://github.com/confuguard/confuguard

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

ConfuGuard: Using Metadata to Detect Active and Stealthy Package Confusion Attacks Accurately and at Scale ICSE ’26, 2026, Rio De Janeiro, Brazil

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

REFERENCES
[1] Dependency confusion: Supply chain attacks. https://orca.security/resources/

blog/dependency-confusion-supply-chain-attacks/. Accessed: 2025-03-12.
[2] Guide to maven naming conventions. https://maven.apache.org/guides/mini/

guide-naming-conventions.html.
[3] Hugging face naming limitations. https://jfrog.com/help/r/jfrog-artifactory-

documentation/hugging-face-naming-limitations.
[4] Malicious npm package typosquats popular typescript eslint plugin.

https://socket.dev/blog/malicious-npm-package-typosquats-popular-
typescript-eslint-plugin. Accessed: 2025-03-12.

[5] Malicious package exploits go module proxy caching for persistence.
https://socket.dev/blog/malicious-package-exploits-go-module-proxy-
caching-for-persistence. Accessed: 2025-03-12.

[6] npm package json: name. https://docs.npmjs.com/cli/v9/configuring-npm/
package-json#name.

[7] Package names. https://go.dev/blog/package-names.
[8] Pep 423 – metadata for python software packages 2.0. https://peps.python.org/

pep-0423/.
[9] Rubygems.org: Gem naming conventions. https://guides.rubygems.org/

rubygems-org-gem-naming/.
[10] Whoami: A cloud image name confusion attack. https://securitylabs.datadoghq.

com/articles/whoami-a-cloud-image-name-confusion-attack/.
[11] pgvector: A vector extension for postgresql. https://github.com/pgvector/

pgvector, 2023.
[12] General Services Administration (GSA) 18F. 18f open source policy. https:

//18f.gsa.gov/open-source-policy/, 2025.
[13] Agency for Healthcare Research and Quality. Alert fatigue. https://psnet.ahrq.

gov/primer/alert-fatigue, 2019.
[14] Paschal C Amusuo, Kyle A Robinson, Tanmay Singla, Huiyun Peng, Aravind

Machiry, Santiago Torres-Arias, Laurent Simon, and James C Davis. ZTDJAVA:
Mitigating software supply chain vulnerabilities via zero-trust dependencies. In
ICSE, 2025.

[15] Alex Birsan. Dependency confusion: How i hacked into apple, microsoft and
dozens of other companies, 2021.

[16] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching
word vectors with subword information. Transactions of the Association for
Computational Linguistics, 5:135–146, 2017.

[17] Hudson Borges and Marco Tulio Valente. What’s in a GitHub Star? Understand-
ing Repository Starring Practices in a Social Coding Platform. In Journal of
Systems and Software (JSS), 2018.

[18] Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. Exploring the
influence of identifier names on code quality: An empirical study. In 2010 14th
European Conference on Software Maintenance and Reengineering, pages 156–165.
IEEE, 2010.

[19] Jacob Cohen. A coefficient of agreement for nominal scales. Educational and
psychological measurement, 20(1):37–46, 1960.

[20] Conor Coyle. How google chrome can identify typos in urls to keep you safe
online, 2023.

[21] Gabriel Ferreira, Limin Jia, Joshua Sunshine, and Christian Kastner. Containing
Malicious Package Updates in npm with a Lightweight Permission System. In
2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE),
pages 1334–1346. IEEE, May 2021. Place: Madrid, ES.

[22] Evgeniy Gabrilovich and Alex Gontmakher. The homograph attack. Communi-
cations of the ACM, 2002.

[23] Yacong Gu, Lingyun Ying, Yingyuan Pu, Xiao Hu, Huajun Chai, Ruimin Wang,
Xing Gao, and Haixin Duan. Investigating package related security threats in
software registries. In 2023 IEEE Symposium on Security and Privacy (SP), pages
1578–1595. IEEE, 2023.

[24] Sajal Halder, Michael Bewong, Arash Mahboubi, Yinhao Jiang, Md Rafiqul Islam,
Md Zahid Islam, Ryan HL Ip, Muhammad Ejaz Ahmed, Gowri Sankar Ramachan-
dran, and Muhammad Ali Babar. Malicious package detection using metadata
information. In Proceedings of the ACM on Web Conference (WWW’24), pages
1779–1789, 2024.

[25] Hao He, Haoqin Yang, Philipp Burckhardt, Alexandros Kapravelos, Bogdan
Vasilescu, and Christian Kästner. 4.5 million (suspected) fake stars in github: A
growing spiral of popularity contests, scams, and malware. arXiv:2412.13459,
2024.

[26] Wenxin Jiang, Chingwo Cheung, George K Thiruvathukal, and James C Davis.
Exploring naming conventions (and defects) of pre-trained deep learning models
in hugging face and other model hubs. arXiv:2310.01642, 2023.

[27] Wenxin Jiang, Nicholas Synovic, Matt Hyatt, Taylor R. Schorlemmer, Rohan Sethi,
Yung-Hsiang Lu, George K. Thiruvathukal, and James C. Davis. An empirical
study of pre-trainedmodel reuse in the hugging face deep learningmodel registry.
In IEEE/ACM 45th International Conference on Software Engineering (ICSE’23),
2023.

[28] Berkay Kaplan and Jingyu Qian. A Survey on Common Threats in npm and PyPi
Registries, August 2021. arXiv:2108.09576 [cs].

[29] Takashi Koide, Naoki Fukushi, Hiroki Nakano, and Daiki Chiba. Phishreplicant:
A language model-based approach to detect generated squatting domain names.
In Proceedings of the 39th Annual Computer Security Applications Conference,
pages 1–13, 2023.

[30] Piergiorgio Ladisa, Henrik Plate, Matias Martinez, and Olivier Barais. SoK:
Taxonomy of Attacks on Open-Source Software Supply Chains. In 2023 IEEE
Symposium on Security and Privacy (SP), pages 1509–1526, May 2023.

[31] Jasmine Latendresse, Suhaib Mujahid, Diego Elias Costa, and Emad Shihab. Not
all dependencies are equal: An empirical study on production dependencies in
npm. In Proceedings of the 37th IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2022.

[32] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

[33] Guannan Liu, Xing Gao, HainingWang, and Kun Sun. Exploring the unchartered
space of container registry typosquatting. In 31st USENIX Security Symposium
(USENIX Security 22), pages 35–51, 2022.

[34] Yi Liu, Gelei Deng, Yuekang Li, Kailong Wang, Zihao Wang, Xiaofeng Wang,
Tianwei Zhang, Yepang Liu, Haoyu Wang, Yan Zheng, et al. Prompt injection
attack against llm-integrated applications. arXiv:2306.05499, 2023.

[35] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model
predictions. Advances in neural information processing systems, 2017.

[36] Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest
neighbor search using hierarchical navigable small world graphs. IEEE transac-
tions on pattern analysis and machine intelligence, 42(4):824–836, 2018.

[37] Mary L McHugh. Interrater reliability: the kappa statistic. Biochemia medica,
22(3):276–282, 2012.

[38] Microsoft. Microsoft ossgadget. https://github.com/microsoft/OSSGadget.
[39] Muhammad Muzammil, Zhengyu Wu, Lalith Harisha, Brian Kondracki, and Nick

Nikiforakis. Typosquatting 3.0: Characterizing squatting in blockchain naming
systems. arXiv:2411.00352, 2024.

[40] Andrew Nesbitt. Ecosyste.ms database: A comprehensive dataset for software
ecosystem analysis, 2025.

[41] Shradha Neupane, Grant Holmes, Elizabeth Wyss, Drew Davidson, and Lorenzo
De Carli. Beyond typosquatting: an in-depth look at package confusion. In
USENIX Security ’23, pages 3439–3456, 2023.

[42] npm, Inc. Threats and mitigations. https://docs.npmjs.com/threats-and-
mitigations#by-typosquatting--dependency-confusion, 2024.

[43] Marc Ohm and Charlene Stuke. Sok: Practical detection of software supply
chain attacks. In Proceedings of the 18th International Conference on Availability,
Reliability and Security, pages 1–11, 2023.

[44] Chinenye Okafor, Taylor R. Schorlemmer, Santiago Torres-Arias, and James C.
Davis. SoK: Analysis of Software Supply Chain Security by Establishing Secure
Design Properties. In Proceedings of the 2022 ACM Workshop on Software Supply
Chain Offensive Research and Ecosystem Defenses, pages 15–24, Los Angeles CA
USA, November 2022. ACM.

[45] ProtectAI. Unveiling ai supply chain attacks on hugging face, n.d. Accessed:
2025-01-15.

[46] Python Software Foundation. Acceptable use policy. https://policies.python.org/
pypi.org/Acceptable-Use-Policy/, 2024.

[47] Eric S. Raymond. The cathedral & the bazaar: musings on Linux and open source
by an accidental revolutionary. O’Reilly, Beijing ; Cambridge, Mass, 1st ed edition,
1999.

[48] ReversingLabs. R77 rootkit: Typosquatting attack in npm ecosystem, 2023.
[49] Taylor R Schorlemmer, Kelechi G Kalu, Luke Chigges, Kyung Myung Ko, et al.

Signing in four public software package registries: Quantity, quality, and influ-
encing factors, 2024.

[50] Lee Joon Sern and Yam Gui Peng David. Typoswype: An imaging approach
to detect typo-squatting. In 2021 11th IFIP International Conference on New
Technologies, Mobility and Security (NTMS), pages 1–5. IEEE, 2021.

[51] Ax Sharma. PyPI crypto-stealer targets windows users, revives malware cam-
paign. Sonatype Blog, May 2024.

[52] César Soto-Valero, Amine Benelallam, Nicolas Harrand, Olivier Barais, and Benoit
Baudry. The Emergence of Software Diversity in Maven Central. In International
Conference on Mining Software Repositories (MSR), 2019.

[53] Joseph Spracklen, Raveen Wijewickrama, AHM Sakib, Anindya Maiti, and Mur-
tuza Jadliwala. We have a package for you! a comprehensive analysis of package
hallucinations by code generating llms. arXiv:2406.10279, 2024.

[54] Stacklok. Detecting typosquatting attacks on open source packages using leven-
shtein distance and activity data. https://www.blackduck.com/resources/analyst-
reports/open-source-security-risk-analysis.html, n.d.

[55] John Stenbit. Open source software (oss) in the department of defense (dod).
Department of Defense, Memorandum, 2003.

[56] Xiaobing Sun, Xingan Gao, Sicong Cao, Lili Bo, Xiaoxue Wu, and Kaifeng Huang.
1+ 1> 2: Integrating deep code behaviors with metadata features for malicious
pypi package detection. In Proceedings of the 39th IEEE/ACM International Con-
ference on Automated Software Engineering, pages 1159–1170, 2024.

[57] Synopsys, Inc. 2024 open source security and risk analysis report.
https://www.blackduck.com/resources/analyst-reports/open-source-security-

11

https://orca.security/resources/blog/dependency-confusion-supply-chain-attacks/
https://orca.security/resources/blog/dependency-confusion-supply-chain-attacks/
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://jfrog.com/help/r/jfrog-artifactory-documentation/hugging-face-naming-limitations
https://jfrog.com/help/r/jfrog-artifactory-documentation/hugging-face-naming-limitations
https://socket.dev/blog/malicious-npm-package-typosquats-popular-typescript-eslint-plugin
https://socket.dev/blog/malicious-npm-package-typosquats-popular-typescript-eslint-plugin
https://socket.dev/blog/malicious-package-exploits-go-module-proxy-caching-for-persistence
https://socket.dev/blog/malicious-package-exploits-go-module-proxy-caching-for-persistence
https://docs.npmjs.com/cli/v9/configuring-npm/package-json#name
https://docs.npmjs.com/cli/v9/configuring-npm/package-json#name
https://go.dev/blog/package-names
https://peps.python.org/pep-0423/
https://peps.python.org/pep-0423/
https://guides.rubygems.org/rubygems-org-gem-naming/
https://guides.rubygems.org/rubygems-org-gem-naming/
https://securitylabs.datadoghq.com/articles/whoami-a-cloud-image-name-confusion-attack/
https://securitylabs.datadoghq.com/articles/whoami-a-cloud-image-name-confusion-attack/
https://github.com/pgvector/pgvector
https://github.com/pgvector/pgvector
https://18f.gsa.gov/open-source-policy/
https://18f.gsa.gov/open-source-policy/
https://psnet.ahrq.gov/primer/alert-fatigue
https://psnet.ahrq.gov/primer/alert-fatigue
https://github.com/microsoft/OSSGadget
https://docs.npmjs.com/threats-and-mitigations#by-typosquatting--dependency-confusion
https://docs.npmjs.com/threats-and-mitigations#by-typosquatting--dependency-confusion
https://policies.python.org/pypi.org/Acceptable-Use-Policy/
https://policies.python.org/pypi.org/Acceptable-Use-Policy/
https://www.blackduck.com/resources/analyst-reports/open-source-security-risk-analysis.html
https://www.blackduck.com/resources/analyst-reports/open-source-security-risk-analysis.html
https://www.blackduck.com/resources/analyst-reports/open-source-security-risk-analysis.html
https://www.blackduck.com/resources/analyst-reports/open-source-security-risk-analysis.html

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

ICSE ’26, 2026, Rio De Janeiro, Brazil Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

risk-analysis.html, 2024.
[58] Matthew Taylor, Ruturaj Vaidya, Drew Davidson, Lorenzo De Carli, and Vaibhav

Rastogi. Defending against package typosquatting. In Network and System
Security: 14th International Conference (NSS).

[59] Matthew Taylor, Ruturaj K Vaidya, Drew Davidson, Lorenzo De Carli, and
Vaibhav Rastogi. Spellbound: Defending against package typosquatting.
arXiv:2003.03471, 2020.

[60] Tembo. Vector indexes in pgvector. https://tembo.io/blog/vector-indexes-in-
pgvector, 2024.

[61] Christopher Tozzi. Package hallucination: The latest, greatest software supply
chain security threat? IDC Blog, April 22 2024.

[62] Marcin Ulikowski. dnstwist: Domain name permutation engine for detecting
homograph phishing attacks, typo squatting, and brand impersonation. https:
//github.com/elceef/dnstwist, 2025.

[63] Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan Dautenhahn, Andre DeHon,
and Jonathan M. Smith. BreakApp: Automated, Flexible Application Compart-
mentalization. In Proceedings 2018 Network and Distributed System Security
Symposium, San Diego, CA, 2018. Internet Society.

[64] Duc-Ly Vu, FabioMassacci, Ivan Pashchenko, Henrik Plate, andAntonino Sabetta.
LastPyMile: identifying the discrepancy between sources and packages. In
Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages
780–792, Athens Greece, August 2021. ACM.

[65] Duc-Ly Vu, Ivan Pashchenko, FabioMassacci, Henrik Plate, andAntonino Sabetta.
Typosquatting and combosquatting attacks on the python ecosystem. In EuroS&P
Workshops, pages 509–514. IEEE, 2020.

[66] Vulcan Cyber. Can you trust chatgpt’s package recommendations? https:
//vulcan.io/blog/ai-hallucinations-package-risk, April 17 2023.

[67] Erik Wittern, Philippe Suter, and Shriram Rajagopalan. A look at the dynamics of
the JavaScript package ecosystem. In International Conference on Mining Software
Repositories (MSR), 2016.

[68] Sibo Yi, Yule Liu, Zhen Sun, Tianshuo Cong, Xinlei He, Jiaxing Song, Ke Xu, and
Qi Li. Jailbreak attacks and defenses against large language models: A survey.
arXiv:2407.04295, 2024.

[69] Markus Zimmermann, Cristian-Alexandru Staicu, and Michael Pradel. Small
World with High Risks: A Study of Security Threats in the npm Ecosystem. In
USENIX Security Symposium, 2019.

[70] Tzachi Zornstein and Yehuda Gelb. A new, stealthier type of typosquatting attack
spotted targeting NPM. Checkmarx Blog, May 2023.

[71] Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt
Fredrikson. Universal and transferable adversarial attacks on aligned language
models. arXiv:2307.15043, 2023.

12

https://www.blackduck.com/resources/analyst-reports/open-source-security-risk-analysis.html
https://tembo.io/blog/vector-indexes-in-pgvector
https://tembo.io/blog/vector-indexes-in-pgvector
https://github.com/elceef/dnstwist
https://github.com/elceef/dnstwist
https://vulcan.io/blog/ai-hallucinations-package-risk
https://vulcan.io/blog/ai-hallucinations-package-risk

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 SPRs and Package Naming
	2.2 Package Confusion Attacks and Taxonomy
	2.3 Defenses Against Package Confusion

	3 Problem Statement
	3.1 Refined Definition of Package Confusion
	3.2 Threat Model
	3.3 Requirements

	4 Analysis of Confusion Attacks
	4.1 Attackers' Practices
	4.2 Metadata Features of Package Confusion

	5 ConfuGuard Design and Implementation
	5.1 Part 1⃝: Package Metadata Database
	5.2 Part 2⃝: Defining Trusted Resources
	5.3 Part 3⃝: Package Name Embeddings
	5.4 Part 4⃝: Package Confusion Search
	5.5 Part 5⃝: Benignity Filter
	5.6 Part 6⃝: Alerting in Production

	6 Evaluation
	6.1 Baseline and Evaluation Datasets
	6.2 EQ1: Perf. of Embedding Model
	6.3 EQ2: Neighbor Search Accuracy
	6.4 EQ3: Benignity Check Accuracy
	6.5 EQ4: Discovery of New Package Confusions
	6.6 EQ5: System Accuracy and Efficiency

	7 Discussion
	7.1 Three Lessons Learned from Production
	7.2 Limitations and Security Analysis
	7.3 Future Directions

	8 Conclusion
	References

